# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) Intersection Control Evaluation

Mankato, MN

#### **Prepared For:**

Mankato Area Planning Organization (MAPO) 10 Civic Center Plaza Mankato, MN 56001

#### **Prepared By:**

Alliant Engineering, Inc. 733 Marquette Avenue, Suite 700 Minneapolis, MN 55402



Final Report December 7, 2021

## INTERSECTION CONTROL EVALUATION

for

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

Mankato, Blue Earth County

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

| March | Marc

#### **APPROVED:**

Jeffrey E Johnson
Date: 2021.12.14 12:47:42 -06'00'

City of Mankato Engineer

Date

Ryan Thilges
DN: cn=Ryan Thilges, on-Blue Earth County, our-Public Works, our-Public Work



December 7, 2021

İ

## **Table of Contents**

| List of     | Figures                                            | ii |
|-------------|----------------------------------------------------|----|
| List of     | Tables                                             | ii |
| 1.0         | Introduction                                       | 1  |
| 1.1         | DESCRIPTION OF LOCATION                            | 1  |
| 1.2         | PROJECT MANAGEMENT TEAM                            |    |
| 1.3         | ELEMENTS OF EVALUATION                             | 1  |
| 2.0         | Existing Conditions                                |    |
| 2.1         | ROADWAY AND TRAFFIC CONTROL CHARACTERISTICS        | 3  |
| 2.2         | Crash Experience                                   |    |
|             | 2.1 Crash Rate                                     |    |
| 2.2         | 2.2 Intersection Crash Severity                    | 8  |
| 3.0         | Traffic Volumes                                    | 9  |
| 3.1         | EXISTING TRAFFIC VOLUMES                           | 9  |
| 3.2         | Traffic Growth Rates                               | 11 |
| 3.3         | FORECAST PEAK HOUR TRAFFIC VOLUMES                 | 11 |
| 4.0         | Alternatives Analysis                              | 13 |
| 4.1         | Traffic Control Devices                            | 13 |
| 4.2         | Warrant Analysis                                   | 14 |
| 4.2         | 2.1 All-Way Stop Warrant Analysis                  |    |
|             | 2.2 Signal Warrant Analysis                        |    |
| 4.3         | ROUNDABOUT CAPACITY ANALYSIS                       |    |
| 4.4         | DETAILED ALTERNATIVES ANALYSIS                     |    |
| 4.5         | SAFETY ANALYSIS                                    |    |
| 4.6         | TRAFFIC OPERATIONS ANALYSIS                        |    |
| 4.7         | CONSTRUCTION COST ESTIMATES                        |    |
| 4.8         | BENEFIT/COST ANALYSIS                              |    |
| 4.9<br>4.10 | STAKEHOLDER INPUTALTERNATIVE EVALUATION MATRIX     |    |
|             |                                                    |    |
| 5.0         | Recommendations                                    | 30 |
| Appen       | dix A: Detailed Crash Trend Analysis               | A  |
| Appen       | dix B: Detailed All-Way-Stop Warrant Analysis      | B  |
| Appen       | dix C: Detailed Signal Warrant Analysis            | C  |
| Appen       | dix D: Planning-Level Roundabout Capacity Analysis |    |
| Appen       | dix E: CMF ID 9120                                 | В  |
| Appen       | dix F: CMF ID 9024                                 | F  |
| Appen       | dix G: Excerpt from 2017 MnDOT Roundabout Study    | G  |



Intersection Control Evaluation
CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

| Appendix H: Detailed Measures of Effectiveness Results                 | Н  |
|------------------------------------------------------------------------|----|
| Appendix I: Detailed Benefit/Cost Analysis                             | I  |
| List of Figures                                                        |    |
|                                                                        |    |
| Figure 1. Project Location                                             |    |
| Figure 2. Existing Conditions                                          |    |
| Figure 3. Collision Diagram                                            |    |
| Figure 4. Intersection Crash Severities                                |    |
| Figure 5. Intersection Crash Types by Severity                         |    |
| Figure 6. COVID-19 Average Volume Profiles                             |    |
| Figure 7. Existing Traffic Volumes                                     |    |
| Figure 8. Traffic Growth Rate                                          |    |
| Figure 9. Forecast Traffic Volumes                                     |    |
| Figure 10. 2042 Planning-Level Roundabout Capacity Analysis            |    |
| Figure 11. Alternative 1 Conceptual Layout                             |    |
| Figure 12. Alternative 2 Conceptual Layout                             |    |
| Figure 13. Alternative 3 Conceptual Layout                             |    |
| Figure 14. Alternative 4 Conceptual Layout                             | 26 |
| List of Tables                                                         |    |
| Table 1. Crash Rate Summary                                            | 7  |
| Table 2. All-Way Stop Warrant Analysis Summary                         | 14 |
| Table 3. Signal Warrant Analysis Summary                               | 15 |
| Table 4. Safety Analysis Summary                                       | 18 |
| Table 5. Level of Service Criteria                                     | 19 |
| Table 6. Measure of Effectiveness Summary - Existing Conditions (2021) | 20 |
| Table 7. Measures of Effectiveness Summary - Forecast Year 2022        | 20 |
| Table 8. Measures of Effectiveness Summary - Forecast Year 2032        | 20 |
| Table 9. Measures of Effectiveness Summary - Forecast Year 2042        |    |
| Table 10. Construction Cost Estimate Summary                           | 22 |
| Table 11. Benefit/Cost Analysis Summary                                | 22 |
| Table 12. Alternatives Evaluation Matrix                               | 28 |

## 1.0 Introduction

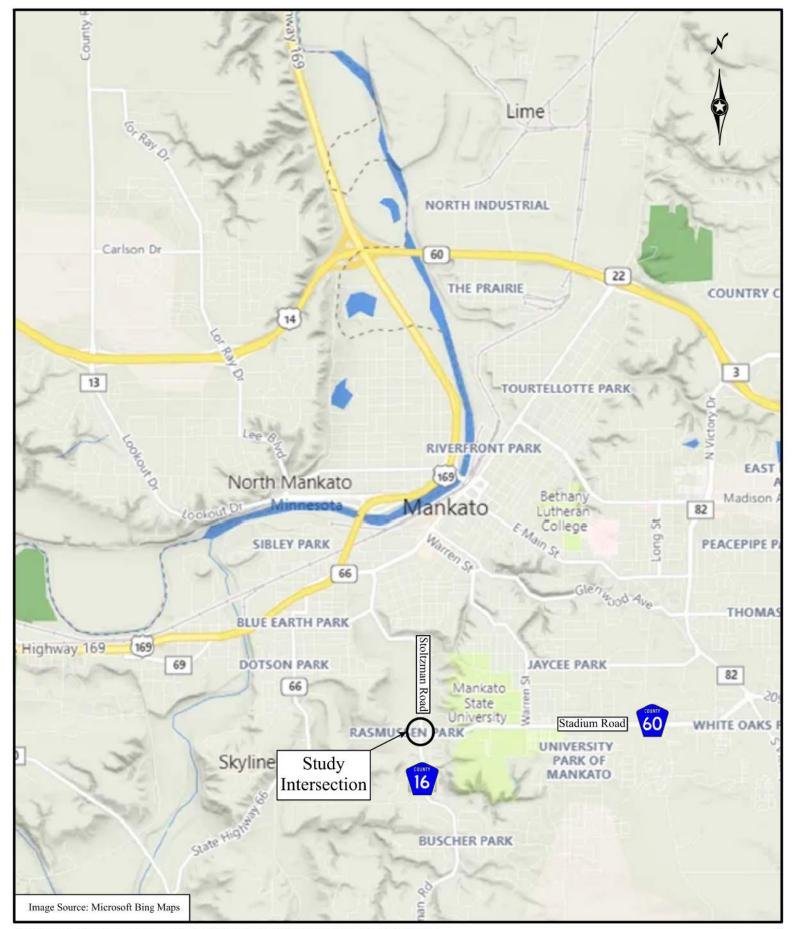
The Mankato Area Planning Organization (MAPO) in conjunction with Blue Earth County and the City of Mankato have identified the need to conduct an Intersection Control Evaluation (ICE) for the CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) intersection in Mankato, MN. The purpose of this study is to identify the appropriate traffic control and optimal geometrics for existing and forecast conditions that is consistent with the County and City's transportation systems and MAPO Long Range Transportation Plan (LRTP).

#### 1.1 Description of Location

The intersection of CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) is located in the City of Mankato, MN (see **Figure 1**: Project Location). The area to the east of the intersection is primarily residential, with the Minnesota State University, Mankato campus located approximately 0.5 miles east of the intersection. Land use surrounding the intersection is a mix of parkland, residential, and light commercial.

#### 1.2 Project Management Team

The Project Management Team (PMT) met a total of four times throughout the duration of the project to present and discuss progress of the study. PMT meetings occurred on May 26<sup>th</sup>, October 11<sup>th</sup>, November 1<sup>st</sup>, and November 29<sup>th</sup> of 2021. The PMT included members from MAPO, Blue Earth County, the City of Mankato, and the consultant team, Alliant Engineering, Inc. The PMT consisted of the following members:


- Charles Androsky, Mankato/North Mankato Area Planning Organization (MAPO)
- Ryan Thilges, County Engineer, Blue Earth County
- Stefan Gantert, Assistant County Engineer, Blue Earth County
- Jon Nelson, Associate Civil Engineer, City of Mankato
- Scott Poska, Alliant Engineering

#### 1.3 Elements of Evaluation

The following elements are included in this ICE:

- Existing Conditions (Section 2.0)
- Traffic Volumes (Section 3.0)
- Alternatives Analysis (Section 4.0)
- Recommendations (Section 5.0)

Alliant No. 121-0105 December 7, 2021



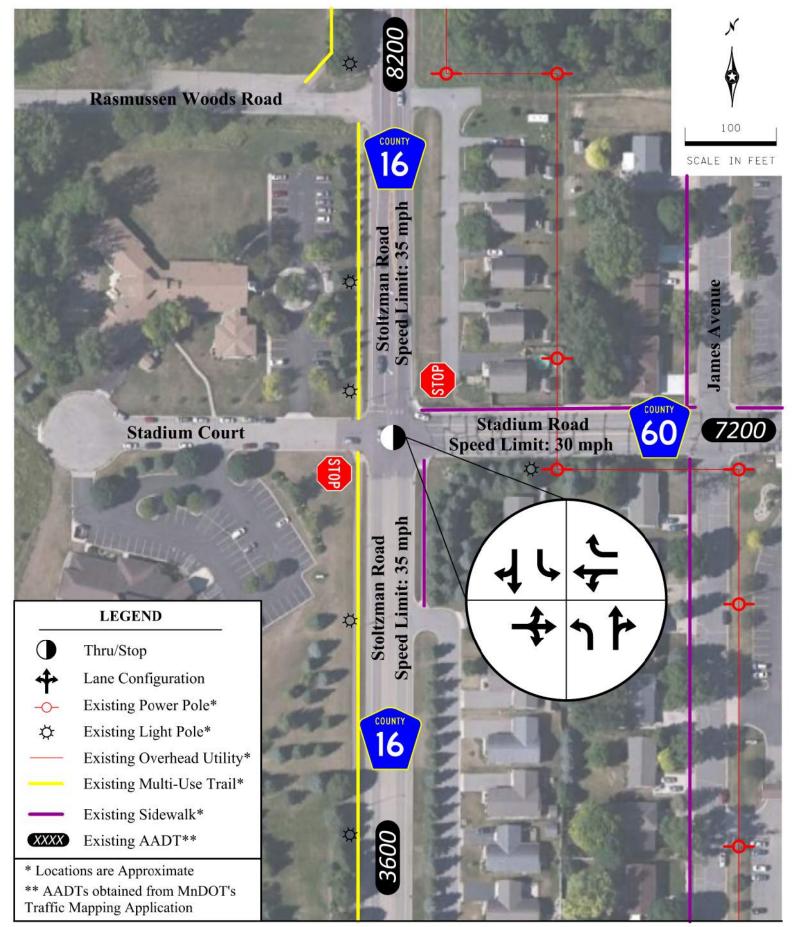
CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) - Mankato

Figure 1 Project Location



## 2.0 Existing Conditions

The following sections document the existing conditions analysis completed for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection.


#### 2.1 Roadway and Traffic Control Characteristics

The intersection is currently controlled by thru/stop. The existing roadway characteristics are summarized below:

- **CSAH 16** (**Stoltzman Road**): The north leg of CSAH 16 (Stoltzman Road) serves as a *Minor Arterial* roadway and the south leg serves as a *Major Collector* roadway. The north leg consists of a two-lane roadway with paved shoulders and a dedicated southbound left-turn lane at the intersection. The south leg consists of a two-lane roadway with a Center Two-Way Left-Turn Lane (CTWLTL). A multi-use trail runs along the west side of CSAH 16, providing connections to the Rasmussen Woods Park and Mankato West High School to the north of the intersection. The posted speed limit is 35 miles per hour (MPH).
- **CSAH 60** (**Stadium Road**): CSAH 60 (Stadium Road) is the east leg of the intersection and is classified as a *Minor Arterial* roadway, consisting of a four-lane undivided cross-section with a dedicated right-turn lane and shared through/left-turn lane at the intersection. Sidewalk facilities are located at the back of curb on the north side of the road. CSAH 60 (Stadium Road) provides a key connection to the Minnesota State University Mankato campus, located approximately 0.5 miles east of the intersection. The posted speed limit is 30 MPH.
- **CSAH 60** (**Stadium Court**): CSAH 60 (Stadium Court) is the west leg of the intersection and consists of a two-lane cross section with parking lanes. CSAH 60 (Stadium Court) terminates approximately 300 feet west of the intersection at a cul-de-sac.

Key intersection characteristics, including lane configuration and traffic control, are depicted in **Figure 2**.

Alliant No. 121-0105 December 7, 2021



CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) - Mankato

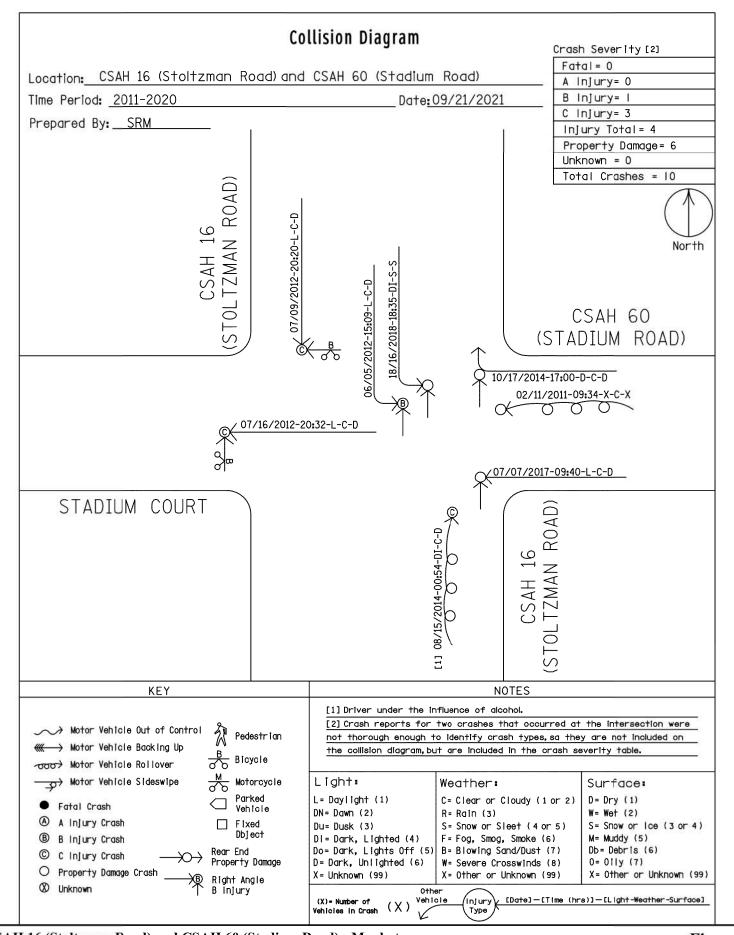
Figure 2
Existing Conditions



#### 2.2 Crash Experience

Historical crash data from the most recent ten years of data available, 2011 through 2020, was obtained from MnDOT's Crash Mapping Analysis Tool (MnCMAT2) platform. Included narratives provided by law enforcement were reviewed to ensure data accuracy. Based on the crash data provided, there were 10 reported crashes at the intersection during the 10-year analysis period (see **Figure 3**: Collision Diagram). The crashes are classified into the following types:

- 2 of 10 Crashes (20 percent) Left Turn
- 2 of 10 Crashes (20 percent) Bicycle
- 2 of 10 Crashes (20 percent) Ran-off-road
- 2 of 10 Crashes (20 percent) Other
- 1 of 10 Crashes (10 percent) Angle
- 1 of 10 Crashes (10 percent) Right Turn


The primary crash types for this intersection are left turn crashes and bicycle crashes. Both left turn crashes occurred between a southbound left-turning vehicle and a northbound through vehicle. One bicycle crash involved a bicyclist crossing the north leg of CSAH 16 (Stoltzman Road), and one involved a bicyclist crossing the west leg of CSAH 60 (Stadium Road).

#### 2.2.1 Crash Rate

History has proven that crashes are a function of exposure. Roadways with higher traffic volumes experience more crashes than similar roadways with lower volumes. Rather than simply documenting the number of crashes that occur at an intersection, the crash rate must be considered. Crash rates normalize different locations with varying traffic volumes, providing a useful tool in comparing the locations with respect to safety. Actual crash rates at specific locations can also be compared to average or typical values for similar intersection types. Intersection crash rates are defined as the number of crashes occurring per million entering vehicles (MEV). **Table 1** summarizes the observed intersection crash rates compared to the statewide average for similar traffic control and roadway types.

Crash occurrence is somewhat random by nature. Identifying every intersection with a crash rate above the statewide average in an analysis would produce a large amount of data that may not be statistically relevant with respect to safety deficiencies. The critical crash rate identifies locations that have a crash rate higher than similar facilities by a statistically significant amount. The critical crash rate is calculated by adjusting the systemwide average based on the amount of exposure and a statistical constant indicating level of confidence. At locations where the observed crash rate exceeds the critical crash rate, it is 99 percent certain that an intersection or roadway segment could be improved through the modification of the existing traffic control, the configuration of the intersection, or the configuration of the roadway.

The observed 10-year crash rate at the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection (0.25 crashes / MEV) is higher than the statewide average for an urban through/stop intersection (0.09 crashes / MEV) as well as the calculated critical crash rate (0.22 crashes / MEV) resulting in a critical crash rate index of 1.14. Therefore, the number of reported crashes would be considered statistically significant.





**Table 1. Crash Rate Summary** 

| 10-Year Crash A                    | nalysis (2011-2020)       | Rate Category              | Crash | K/A  |
|------------------------------------|---------------------------|----------------------------|-------|------|
| Traffic Control                    | Thru/Stop<br><i>Urban</i> | Intersection               | 0.25  | 0.00 |
| Total Crashes <sup>1</sup>         | 10                        | State Average <sup>3</sup> | 0.09  | 0.22 |
| Total Entering Volume <sup>2</sup> | 40,180,417                | Critical <sup>4,5</sup>    | 0.22  | 2.41 |
| K/A Crashes                        | 0                         | Critical Index             | 1.14  | 0.00 |

<sup>&</sup>lt;sup>1</sup>Crash Data obtained from MnCMAT and detailed police crash reports.

<sup>&</sup>lt;sup>2</sup> Calculated from AADT obtained from MnDOT Traffic Data Map

<sup>&</sup>lt;sup>3</sup> MnDOT's 2015-2019 Intersection Toolkit was used to determine the State average crash rates.

<sup>&</sup>lt;sup>4</sup> The critical rate is a statistically adjusted crash rate to account for random nature of crashes

<sup>&</sup>lt;sup>5</sup> A 99.5% confidence level was assumed for critical crash rate and an 80% confidence level was assumed for critical severity and K/A rate.

#### 2.2.2 Intersection Crash Severity

In the 10-year analysis period (2011-2020) one of the 10 total crashes resulted in a minor injury (Type B), three resulted in a possible injury (Type C), and six resulted in a property damage only crash (Type O). Crash severities reported at the intersection are depicted in **Figure 4**.

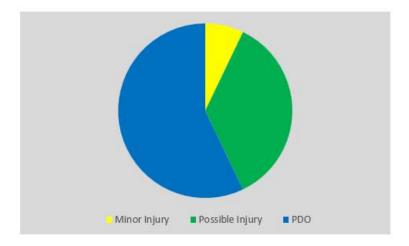



Figure 4. Intersection Crash Severities

With no fatal or serious injury crashes reported, the observed 10-year intersection K/A rate was 0.00. The observed 10-year K/A rate for the intersection is lower than the statewide average K/A rate for urban through/stop intersections (0.22), and lower than the K/A critical rate (2.41) resulting in a critical K/A rate index of 0.00. Therefore, the number of reported K/A crashes is not considered statistically significant. Crash types reported at the intersection are summarized by crash severity in **Figure 5**. A detailed trend analysis is located in **Appendix A**.

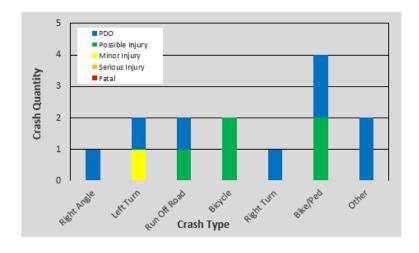



Figure 5. Intersection Crash Types by Severity

#### 3.0 Traffic Volumes

Without a known project construction year, this ICE evaluated intersection geometric and traffic control needs based on the existing year (2021), forecast year 2022, and the 10-year (2032) and 20-year (2042) forecasts.

#### 3.1 Existing Traffic Volumes

Turning movement counts were obtained using video collection completed by Alliant Engineering, Inc. in September of 2021. To account for any loss of traffic volume due to the ongoing COVID-19 pandemic, StreetLight data was used to determine a COVID-19 adjustment factor in September 2021. StreetLight average hourly volume data was obtained for weekdays (Monday – Thursday) for the month of June 2019 (Pre-COVID) and June 2021 (during COVID) and is shown in **Figure 6**. June was used for comparison purposes because at the time of analysis, StreetLight data was not available for the fall 2021. Pre-COVID volumes were on average 15% higher than during COVID, so an adjustment factor of 1.15 was applied. The existing 2021 peak hour adjusted traffic volumes are shown in **Figure 7**.

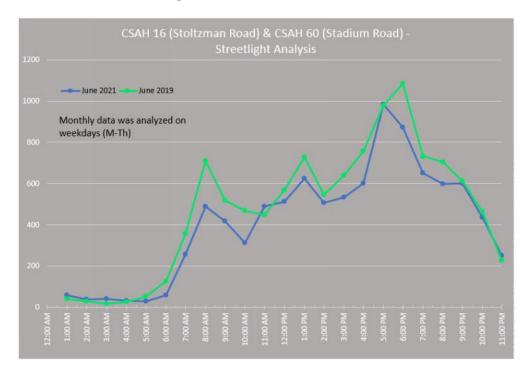
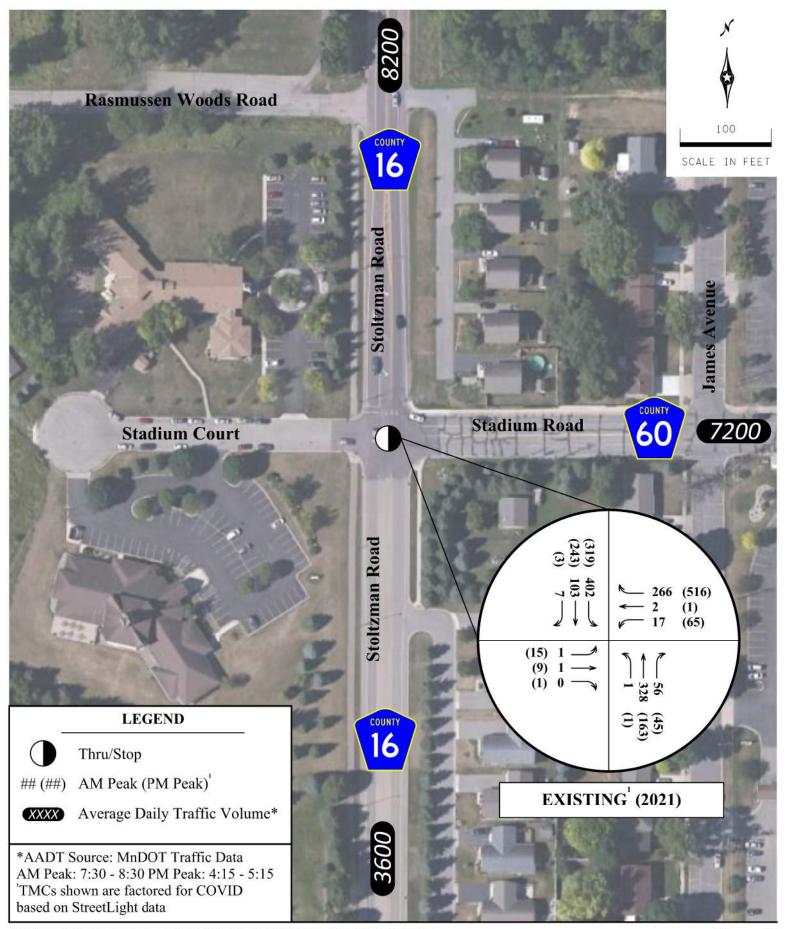




Figure 6. COVID-19 Average Volume Profiles



CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) - Mankato

Figure 7
Existing Traffic Volumes



#### 3.2 Traffic Growth Rates

Historical AADT was obtained from MnDOT's Traffic Mapping Application. Historical AADT data shows traffic volumes increasing slightly on the north leg of CSAH 16 (Stoltzman Road) and east leg of CSAH 60 (Stadium Road) and decreasing slightly on the south leg of CSAH 16 (Stoltzman Road). No historical AADT data was available for the west leg of CSAH 60 (Stadium Court).

Historical AADT data was compared to projected growth rates for the intersection identified in MAPO's 2045 Long Range Transportation Plan (LRTP). The LRTP identified project growth rates for each leg of the intersection ranging from 1.0% to 2.6%. Based on a review of the historical volumes, and with no planned developments in the area, it was determined that a 0.5% growth rate would be utilized for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection. The growth rate and historical volume analysis for the north leg of CSAH 16 (Stoltzman Road) is shown in **Figure 8** below.

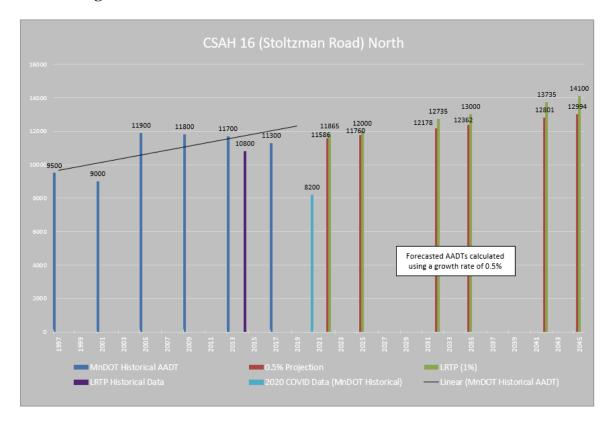
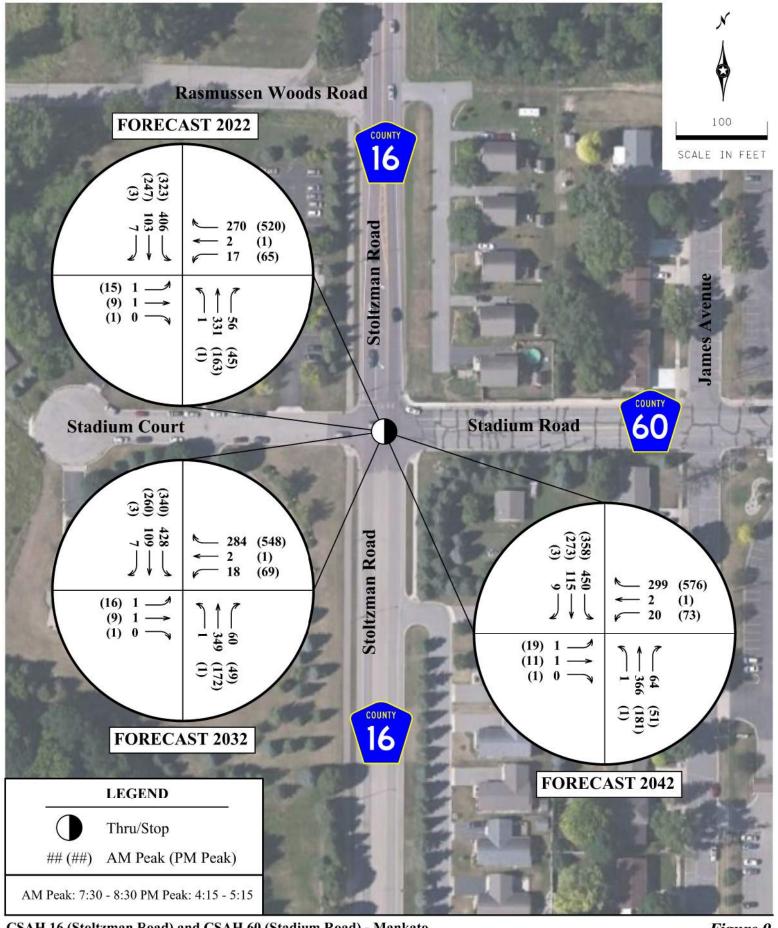




Figure 8. Traffic Growth Rate

#### 3.3 Forecast Peak Hour Traffic Volumes

Forecast AM and PM peak hour turning movement volumes for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection were obtained using a 0.5% growth rate. The resultant forecast year 2022, 2032 and 2042 peak hour traffic volumes are shown in **Figure 9**.



CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) - Mankato

Figure 9 Forecast Traffic Volumes



## 4.0 Alternatives Analysis

The goals of the alternatives analysis were to identify engineering considerations, expected traffic operations and safety impacts, and alternative pros and cons to ultimately determine a recommended alternative for the intersection.

#### 4.1 Traffic Control Devices

Four forms of traffic control were preliminarily identified for analysis for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection. Listed below are descriptions of each traffic control alternative.

- **Through/Stop** Continuation of the existing through/stop control.
- **All-Way Stop** This alternative would convert the existing through/stop control to an all-way stop control.
- **Traffic Signal** This alternative would construct a traffic signal system at the intersection with the existing lane configuration.
- **Urban Compact Roundabout** This alternative would construct a roundabout at the intersection

In addition to traffic control modifications, changes to the lane configurations on the east leg were explored. Because existing traffic volumes on CSAH 60 (Stadium Road) do not exceed the capacity of a two-lane roadway, it could be converted from a four-lane section to a three-lane section with a Center Two Way Left Turn Lane (CTWLTL). This would improve safety by removing the multiple lane threat for crossing pedestrians at CSAH 16 (Stolzman Road) and James Avenue with little operational impact. The CTWLTL would become a dedicated left turn lane and a shared through/right turn lane or a shared through/left turn lane and dedicated right turn lane at the CSAH 16 (Stoltzman Road) intersection.

Alliant No. 121-0105 December 7, 2021

#### 4.2 Warrant Analysis

An all-way stop and traffic signal warrant analysis were completed for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection in accordance with the Minnesota Manual on Uniform Traffic Control Devices (MnMUTCD). The MnMUTCD contains specific engineering standards, or warrants, that define the minimum conditions under which further consideration of an all-way stop and traffic signal is appropriate. These warrants are important for applying consistency in traffic control across intersections throughout the transportation system.

#### 4.2.1 All-Way Stop Warrant Analysis

An all-way stop analysis was completed for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection under forecast years 2022 and 2042. The warrant analysis was conducted in accordance with the Minnesota Manual of Uniform Traffic Control Devices (MnMUTCD). In order for an all-way stop control to be considered, one of the following warrant criteria should be met:

- Warrant Criteria A Signal Justified
- Warrant Criteria B Crash Experience
- Warrant Criteria C Minimum Volumes and Minor Approach Maximum Delay
- Warrant Criteria D 80% Rule

Traffic volumes were reviewed under existing and forecast traffic volumes and crash experience was reviewed using historical crash data from MnCMAT. **Table 2** presents a summary of the MnMUTCD all-way stop warrant analysis results. Results of the all-way stop warrant analysis indicate that none of the warrant criteria are met for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection. The detailed all-way stop warrant analysis results are included in **Appendix B**.

Table 2. All-Way Stop Warrant Analysis Summary

| Forecast Year | Criteria A -<br>Forecast Year Signal Justified |         | Criteria B - Crash<br>Experience |    | Criteria C - Minimum Volumes and<br>Minor Approach Maximum Delay |      |   | Criteria D - 80% Rule |    |      |  |
|---------------|------------------------------------------------|---------|----------------------------------|----|------------------------------------------------------------------|------|---|-----------------------|----|------|--|
|               | Met?                                           | Crashes | Met?                             | C1 | C2                                                               | Met? | В | C1                    | C2 | Met? |  |
| 2022          | No                                             | 1       | No                               | 13 | 11                                                               | No   | 1 | 13                    | 11 | No   |  |
| 2032          | No                                             | 1       | No                               | 14 | 15                                                               | No   | 1 | 14                    | 15 | No   |  |
| 2042          | No                                             | 1       | No                               | 14 | 15                                                               | No   | 1 | 14                    | 15 | No   |  |

Note: Analysis includes 100% of right-turn movements on both minor street approaches

#### 4.2.2 Signal Warrant Analysis

A signal warrant analysis was completed for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection under forecast year 2022 and forecast year 2042 traffic volumes. The warrant analysis was conducted in accordance with the MnMUTCD. In order for a traffic signal to be considered for implementation at the intersection, at least one of the following warrant criteria must be met:

- W1 Eight-Hour Vehicular Volume
- W2 Four-Hour Vehicular Volume
- W3 Peak Hour
- W4 Pedestrian Volume
- W5 School Crossing

- W6 Coordinated Signal System
- W7 Crash Experience
- W8 Roadway Network
- W9 Intersection Near a Grade Crossing

Warrant 1, Warrant 2, and Warrant 3 were reviewed under the forecast traffic volumes. Warrant 7 was reviewed using historical crash data. The remaining traffic signal warrants were not applicable at the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection, or minimum warrant standards were not met. **Table 3** presents a summary of the MnMUTCD signal warrant analysis results. The right-turn volumes on the minor street approaches were omitted from the warrant analysis based on the recommendations in MnDOT Technical Memorandum 13-05-T-02. Results of the signal warrant analysis indicate that none of the warrants are met for forecast years 2022 or 2042. Detailed signal warrant analysis results are included in **Appendix C**.

**Table 3. Signal Warrant Analysis Summary** 

| Forecast Year |    | Varrant 1 - Eight-Hour<br>Vehicular Volumes |           | Warrant 2 - Four-Hour<br>Vehicular Volumes |       | Warrant 3 -<br>Peak Hour |    | Warrant 7 -<br>Crash Experience |         |      |
|---------------|----|---------------------------------------------|-----------|--------------------------------------------|-------|--------------------------|----|---------------------------------|---------|------|
|               | 1A | 1B                                          | <b>1C</b> | Met?                                       | Hours | Met?                     | 3B | Met?                            | Crashes | Met? |
| 2022          | 0  | 0                                           | 0         | No                                         | 0     | No                       | 0  | No                              | 1       | No   |
| 2032          | 0  | 0                                           | 0         | No                                         | 0     | No                       | 0  | No                              | 1       | No   |
| 2042          | 0  | 0                                           | 0         | No                                         | 0     | No                       | 0  | No                              | 1       | No   |

December 7, 2021 15

#### 4.3 Roundabout Capacity Analysis

A planning-level roundabout capacity analysis was completed for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection under forecast year 2022, 2032, and 2042 traffic volumes for peak hour conditions and was conducted in accordance with the Highway Capacity Manual (HCM 2016). The purpose of this analysis was to determine whether a single-lane or multi-lane roundabout would be needed for the intersection under existing and forecast year traffic volumes.

Results of the roundabout capacity analysis for the forecast year 2042 are shown in **Figure 10**. Results indicate that a single-lane roundabout is expected to accommodate peak hour traffic volumes in forecast years 2022, 2032, and 2042. Planning-level roundabout capacity analysis results are located in **Appendix D**.

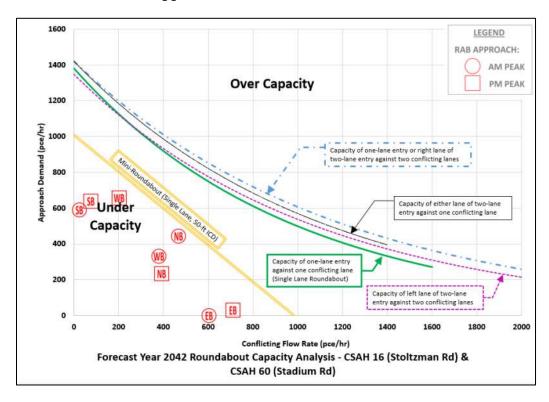



Figure 10. 2042 Planning-Level Roundabout Capacity Analysis

December 7, 2021

16

17

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

#### 4.4 Detailed Alternatives Analysis

Based on the results of the preliminary alternatives analysis and discussions with the PMT, the following alternatives were identified for detailed evaluation, with Alternative 0 serving as the baseline No Build condition:

- **Alternative 0 (No Build)** Under this alternative, the existing through/stop traffic control and existing lane configurations would remain unchanged.
- Alternative 1 Through/Stop with Pedestrian Refuges: The existing through/stop traffic control and lane configurations would remain the same as existing. A 6-foot-wide pedestrian refuge island would be constructed at the north leg of CSAH 16 (Stoltzman Road) by restriping the north leg of the intersection.
- Alternative 2 Through/Stop with Rapid Rectangular Flashing Beacon (RRFB): The existing through/stop traffic control and lane configurations would remain the same as existing. An RRFB would be installed at the north leg of CSAH 16 (Stoltzman Road).
- Alternative 3 Through/Stop with Pedestrian Refuges and RRFB: The existing through/stop traffic control and lane configurations would remain the same as existing. A 6-foot-wide pedestrian refuge island would be constructed and an RRFB system would be installed at the north leg of CSAH 16 (Stoltzman Road).
- Alternative 4 Compact Roundabout: This alternative would construct an urban compact single-lane roundabout at the intersection with a westbound lane drop prior to James Avenue and a pedestrian refuge on the west leg of the CSAH 60 (Stadium Road) and James Avenue intersection.

December 7, 2021

#### 4.5 Safety Analysis

A detailed safety analysis was completed to help understand the anticipated safety improvement with each alternative. The safety analysis investigates the expected change in or elimination of crash types, evaluates the anticipated injury rate distribution, and computes a monetary annual crash cost for each alternative.

Future crashes for Alternative 1, Alternative 2, and Alternative 3 were estimated using Crash Modification Factors (CMFs) from the CMF Clearinghouse website. CMF ID 9120<sup>1</sup> for median treatments was applied to Alternative 1 and Alternative 3. CMF ID 9024<sup>2</sup> for installation of an RRFB was applied to Alternative 2 and Alternative 3. Further information on CMF ID 9120 and CMF ID 9024 can be found in **Appendix E** and **Appendix F**, respectively.

Future crashes for the roundabout alternative, Alternative 4, were estimated using values given in a 2017 MnDOT Roundabout Study. The crash rate and injury rate distributions for a single-lane roundabout were applied to crash values for Alternative 4. Further information on the 2017 MnDOT Roundabout study can be found in **Appendix G**. **Table 4** summarizes the results of the safety analysis.

**Table 4. Safety Analysis Summary** 

| Alternative                      | Traffic<br>Control | Estimated<br>Crash Rate<br>per MEV | Estimated<br>Injury<br>Rate | Estimated<br>Crash Cost<br>Per Year | Estimated<br>20-Year<br>Safety Benefit |
|----------------------------------|--------------------|------------------------------------|-----------------------------|-------------------------------------|----------------------------------------|
| Alternative 0: No Build          | Thru/Stop          | 0.25                               | 40%                         | \$73,066                            | -                                      |
| Alternative 1: Ped Refuge        | Thru/Stop          | 0.22                               | 40%                         | \$64,904                            | \$184,847                              |
| Alternative 2: RRFB              | Thru/Stop          | 0.23                               | 34%                         | \$60,434                            | \$305,519                              |
| Alternative 3: Ped Refuge & RRFB | Thru/Stop          | 0.21                               | 36%                         | \$57,202                            | \$392,411                              |
| Alternative 4: Compact RAB       | Roundabout         | 0.32                               | 25%                         | \$71,947                            | \$320,581                              |

Key conclusions of the safety analysis include the following:

- All of the alternatives provide a reduction in injury rate from the No Build. The roundabout alternative (Alternative 4) is expected to have the lowest injury rate of the build alternatives.
- Alternatives 1-3 will result in a reduced crash rate compared to the No Build. Alternative 3 will have the lowest crash rate of the build alternatives.
- Although roundabouts have been proven to decrease the number of injury crashes at an intersection, statewide averages show that single-lane roundabouts increase lower severity crashes, and therefore the total number of crashes at the intersection.

#### 4.6 Traffic Operations Analysis

A traffic operations analysis was completed for each alternative using the forecast year 2022, 2032, and 2042 peak hour traffic volumes. All alternatives were analyzed using Synchro/SimTraffic with the exception of Alternative 4 (Compact Roundabout), which was analyzed using VISSIM. The purpose of this analysis is to evaluate and compare the performance of each alternative. In addition, the traffic operations analysis provides context to the need for intersection improvements based on intersection capacity.

Operations analysis results identify a Level of Service (LOS), which indicates the quality of traffic flow through an intersection. Intersections are given a ranking from LOS A through LOS F. The LOS results are based on average delay per vehicle, which correspond to the delay threshold values shown in **Table 5**.

Delay per Vehicle (seconds) Unsignalized Signalized Level of Service Description Intersection Intersection Free Flow: Low volumes and no delays 0 - 10 0 - 10 > 10 - 20 > 10 - 15 Stable Flow: Speeds restricted by travel conditions, minor delays. Stable Flow: Speeds and maneuverability closely controlled due to higher 雅 题 题 С > 20 - 35 > 15 - 25 volumes. Stable Flow: Speeds considerably affected by change in operating conditions. D > 35 - 55 > 25 - 35 High density traffic restricts maneuverability, volume near capacity. Unstable Flow: Low speeds, considerable delay, volume at or slightly over > 55 - 80 > 35 - 50 capacity. Forced Flow: Very low speeds, volume exceed capacity, long delays with stop > 80 > 50 and go traffic. Source: Highway Capacity Manual, 2010 Edition, Transportation Research Board, Exhibits 18-4 & 19-1.

**Table 5. Level of Service Criteria** 

LOS A indicates the best traffic operation, with vehicles experiencing minimal delays. LOS F indicates an intersection where demand exceeds capacity, or a breakdown of traffic flow. Although traffic simulation models arrive at the average seconds of delay per vehicle slightly differently than HCM procedures, the thresholds presented are still applicable. The LOS C/D/E/boundary for overall operations is generally considered an acceptable threshold for operating conditions in greater Minnesota. For side-street stop-controlled intersections, a key measure of operational effectiveness is the side-street LOS. Long delays and poor LOS can occur on side-street approaches even if the overall intersection is functioning well, making side-street LOS a valuable design criterion.

After LOS, the second component of the operations analysis is a study of vehicular queuing, or the lineup of vehicles waiting to pass through an intersection. An intersection can operate with an acceptable LOS, but if queues from the intersection block entrances to turn lanes or adjacent driveways, unsafe operation conditions could result. The 95<sup>th</sup> percentile queue, or the length of queue with only a five percent probability of being exceeded during an analysis period, is considered the standard for design purposes.

Results of the existing traffic operations analysis are show in **Table 6**. During the AM peak, the westbound through and left-turn movements operate at LOS F, but is a very low volume movement with multiple gaps in conflicting volume on Stoltzman Road during the peak hour. Results of the operations analysis indicate that the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection is expected to operate at an overall LOS B or better for the No Build and each of the alternatives under forecast year 2022, 2032, and 2042 traffic volumes. Results for each alternative under forecast year 2022, 2032, and 2042 are shown in **Tables 7**, **8**, and **9** respectively. Detailed Measures of Effectiveness (MOE) can be found in **Appendix H**.

**Table 6. Measure of Effectiveness Summary - Existing Conditions (2021)** 

| Alternative                | AM    | Peak Hour  | PM Peak Hour |            |  |
|----------------------------|-------|------------|--------------|------------|--|
| Alternative                |       | Delay (s)  | LOS          | Delay (s)  |  |
| Existing Conditions (2021) | A / B | 6.4 / 14.3 | A / B        | 6.8 / 13.2 |  |

Overall Intersection LOS / Worst Approach LOS Overall Intersection Delay / Worst Approach Delay

Table 7. Measures of Effectiveness Summary - Forecast Year 2022

| Alternative                                   | AM    | Peak Hour  | PM Peak Hour |            |  |
|-----------------------------------------------|-------|------------|--------------|------------|--|
| Alternative                                   |       | Delay (s)  | LOS          | Delay (s)  |  |
| Alt 0 (No Build)                              | A / B | 6.4 / 13.9 | A / B        | 6.9 / 14.5 |  |
| Alt 1: Through/Stop with Pedestrian Refuges   | A / B | 6.4 / 13.9 | A / B        | 6.9 / 14.5 |  |
| Alt 2: Through/Stop with RRFB                 | A / B | 6.4 / 13.9 | A / B        | 6.9 / 14.5 |  |
| Alt 3: Through/Stop with Ped Refuges and RRFB | A / B | 6.4 / 13.9 | A / B        | 6.9 / 14.5 |  |
| Alt 4: Compact Roundabout                     | A / B | 5.9 / 12.2 | A / A        | 3.5 / 5.1  |  |

Overall Intersection LOS / Worst Approach LOS Overall Intersection Delay / Worst Approach Delay

Table 8. Measures of Effectiveness Summary - Forecast Year 2032

| Intersection                                  | AM    | Peak Hour  | PM Peak Hour |            |  |
|-----------------------------------------------|-------|------------|--------------|------------|--|
| Intersection                                  |       | Delay (s)  | LOS          | Delay (s)  |  |
| Alt 0 (No Build)                              | A / C | 7.9 / 15.4 | A / B        | 7.7 / 15.0 |  |
| Alt 1: Through/Stop with Pedestrian Refuges   | A / C | 7.9 / 15.4 | A / B        | 7.7 / 15.0 |  |
| Alt 2: Through/Stop with RRFB                 | A / C | 7.9 / 15.4 | A / B        | 7.7 / 15.0 |  |
| Alt 3: Through/Stop with Ped Refuges and RRFB | A / C | 7.9 / 15.4 | A / B        | 7.7 / 15.0 |  |
| Alt 4: Compact Roundabout                     | A / C | 7.7 / 16.6 | A / A        | 3.8 / 5.8  |  |

Overall Intersection LOS / Worst Approach LOS Overall Intersection Delay / Worst Approach Delay



Alliant No. 121-0105 December 7, 2021

Table 9. Measures of Effectiveness Summary - Forecast Year 2042

| Intersection                                  | AM    | Peak Hour   | PM Peak Hour |            |  |
|-----------------------------------------------|-------|-------------|--------------|------------|--|
| intersection                                  | LOS   | Delay (s)   | LOS          | Delay (s)  |  |
| Alt 0 (No Build)                              | A / C | 9.1 / 16.9  | A / C        | 8.5 / 15.9 |  |
| Alt 1: Through/Stop with Pedestrian Refuges   | A / C | 9.1 / 16.9  | A / C        | 8.5 / 15.9 |  |
| Alt 2: Through/Stop with RRFB                 | A / C | 9.1 / 16.9  | A / C        | 8.5 / 15.9 |  |
| Alt 3: Through/Stop with Ped Refuges and RRFB | A / C | 9.1 / 16.9  | A / C        | 8.5 / 15.9 |  |
| Alt 4: Compact Roundabout                     | B / D | 12.3 / 30.0 | A / A        | 4.2 / 6.6  |  |

Overall Intersection LOS / Worst Approach LOS

Overall Intersection Delay / Worst Approach Delay

With no changes to traffic control type or lane configuration, Alternative 1, Alternative 2, and Alternative 3 are anticipated to perform the same as the No Build for the forecast years. Results of the traffic operations analysis show that Alternative 1, Alternative 2, and Alternative 3 will perform at an overall intersection LOS A and worst approach LOS C in the forecast year 2042. It should be noted that although the worst approach has LOS C, the westbound through and left-turn movements do experience LOS F in the 2032 and 2042 AM peak hours, as shown in the Detailed Measures of Effectiveness (MOE), located in **Appendix H**. Although these movements perform at LOS F, the movement volumes are so low that the intersection still performs at an overall LOS A and worst approach LOS C.

Alternative 4: Compact Roundabout is expected to perform better than the No Build in the PM peak for each of the forecast years, resulting in an overall intersection and worst approach LOS A. However, results of the analysis show that Alternative 4 does not perform as well in the AM peak hour, resulting in overall intersection LOS A and worst approach LOS D in the forecast year 2042. These levels of service are slightly worse than the 2042 forecast AM peak hour results for the No Build, which are overall intersection LOS A and worst approach LOS C. The compact roundabout alternative performs worse in the AM peak because of the high volumes on CSAH 16 (Stoltzman Road). This can also be seen in the No Build and for Alternative 1, Alternative 2, and Alternative 3.

#### 4.7 Construction Cost Estimates

High-level construction cost estimates were generated for the intersection alternatives based on a review of the site, previous project experience, and concept-level preliminary layouts. Conceptual layouts for Alternative 1, Alternative 2, Alternative 3 and Alternative 4 are shown in **Figure 11**, **Figure 12**, and **Figure 13**, and **Figure 14** respectively. Construction cost estimates are summarized in **Table 11**. These include a relatively high 30% contingency to account for risk or any unknowns that may not be identified without more detailed engineering. Professional fees for design and construction services as well as potential right of way costs were not included in the construction cost estimates.

Further preliminary engineering is necessary to refine the construction cost estimate to accurately account for actual construction limits, grading, wetland impacts, drainage, and other design considerations. The cost estimates shown are only intended to be used for the purpose of relative comparison within this ICE report.

| Table 10. | Construction | Cost Estimate | Summary |
|-----------|--------------|---------------|---------|
|           |              |               |         |

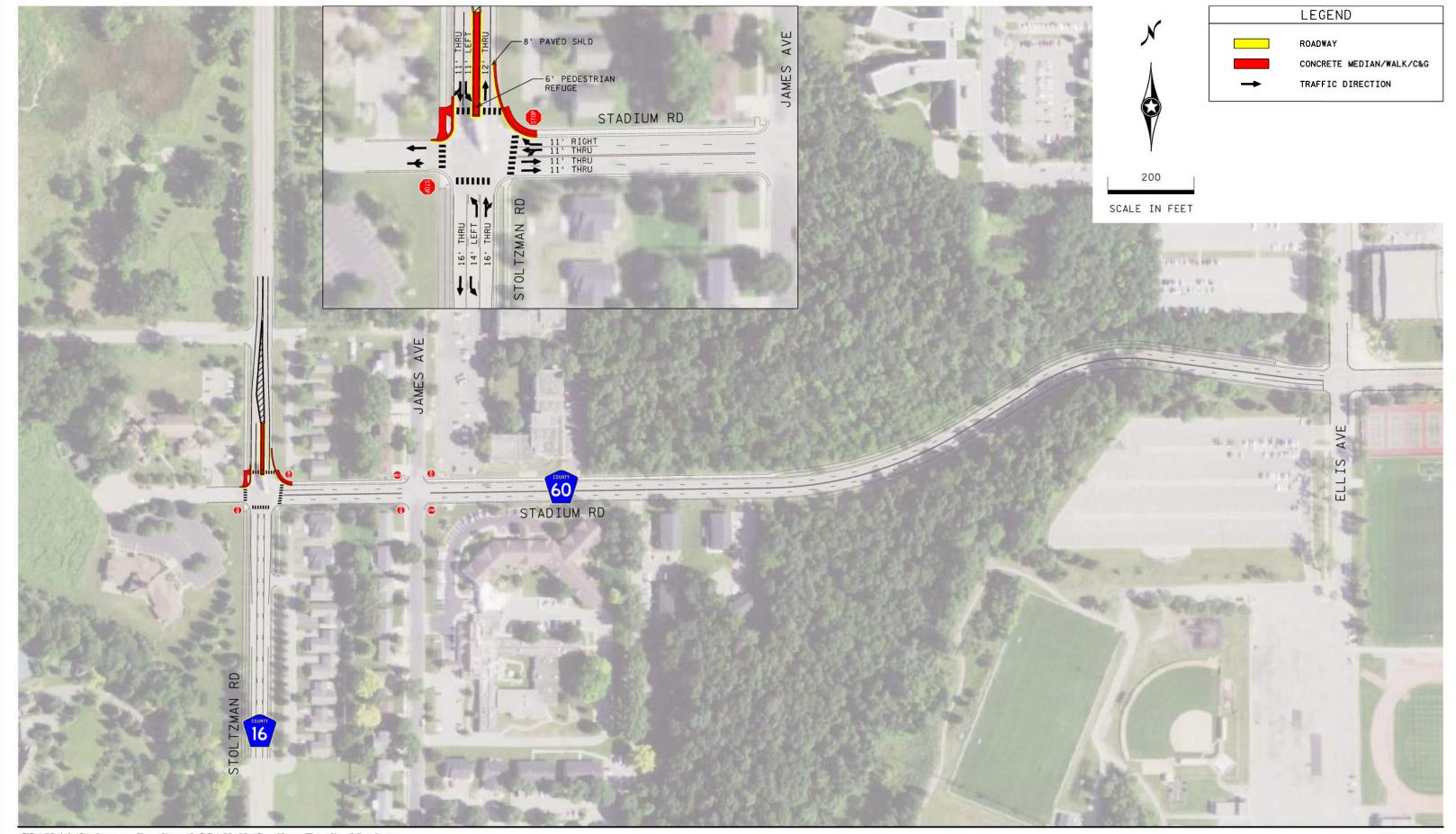
| Alternative                      | Construction Cost Estimate<br>(2022 Dollars) |
|----------------------------------|----------------------------------------------|
| Alternative 0: No Build          | -                                            |
| Alternative 1: Ped Refuge        | \$72,150                                     |
| Alternative 2: RRFB              | \$30,700                                     |
| Alternative 3: Ped Refuge & RRFB | \$94,450                                     |
| Alternative 4: Compact RAB       | \$750,000                                    |

#### 4.8 Benefit/Cost Analysis

An economic benefit/cost analysis was completed in accordance with the MnDOT Office of Investment Management, Benefit/Cost Analysis for Transportation Projects procedures, and assumes a 20-year analysis period. The benefit/cost ratio is a comparison between the estimated traffic operations and safety benefit for the intersection alternatives, the estimated construction cost, and any expected operational and maintenance cost over this period (e.g., lighting, street signs). The highest benefit/cost ratio represents the most economically reactive solution. Benefit/cost ratios less than 1.0 may not be considered an economically viable alternative; however, they may be worth considering as a proactive long-term solution. The economic benefit/cost analyses for the intersection alternatives are summarized in **Table 12** and provided in detail in **Appendix I**.

Table 11. Benefit/Cost Analysis Summary

| Alternative                      | Estimated 20-Year<br>Safety Benefit | Estimated 20-Year<br>Operational Benefit | Construction Cost Estimate<br>(2022 Dollars) | B/C Ratio |
|----------------------------------|-------------------------------------|------------------------------------------|----------------------------------------------|-----------|
| Alternative 0: No Build          | -                                   | -                                        | -                                            | -         |
| Alternative 1: Ped Refuge        | \$184,847                           | -                                        | \$72,150                                     | 4.64      |
| Alternative 2: RRFB              | \$305,519                           | -                                        | \$30,700                                     | 4.90      |
| Alternative 3: Ped Refuge & RRFB | \$392,411                           | -                                        | \$94,450                                     | 3.08      |
| Alternative 4: Compact RAB       | \$320,581                           | \$2,042,460                              | \$750,000                                    | 3.61      |







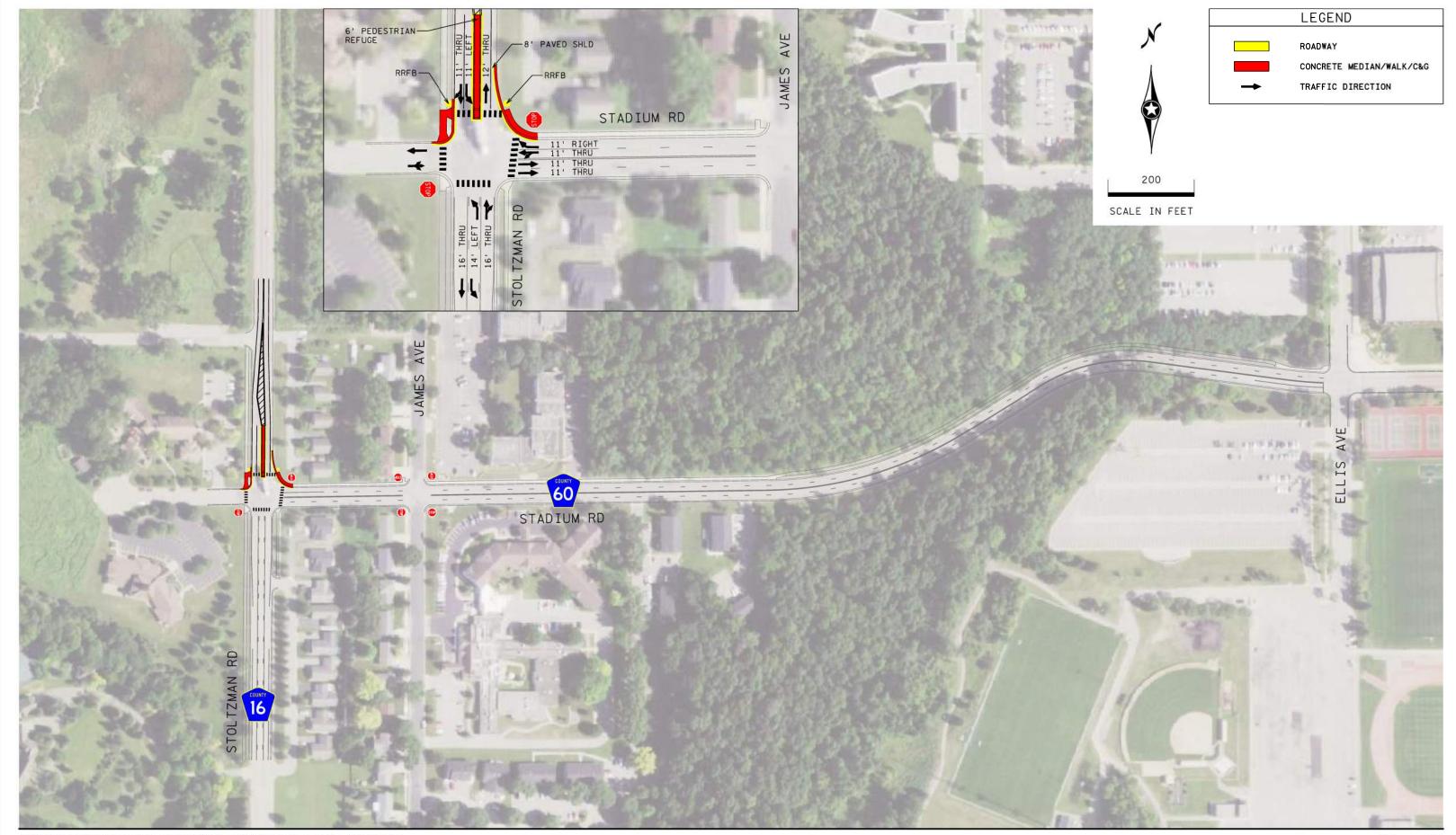


Figure 11 Conceptual Layout Alternative 1







Figure 12 Conceptual Layout Alternative 2







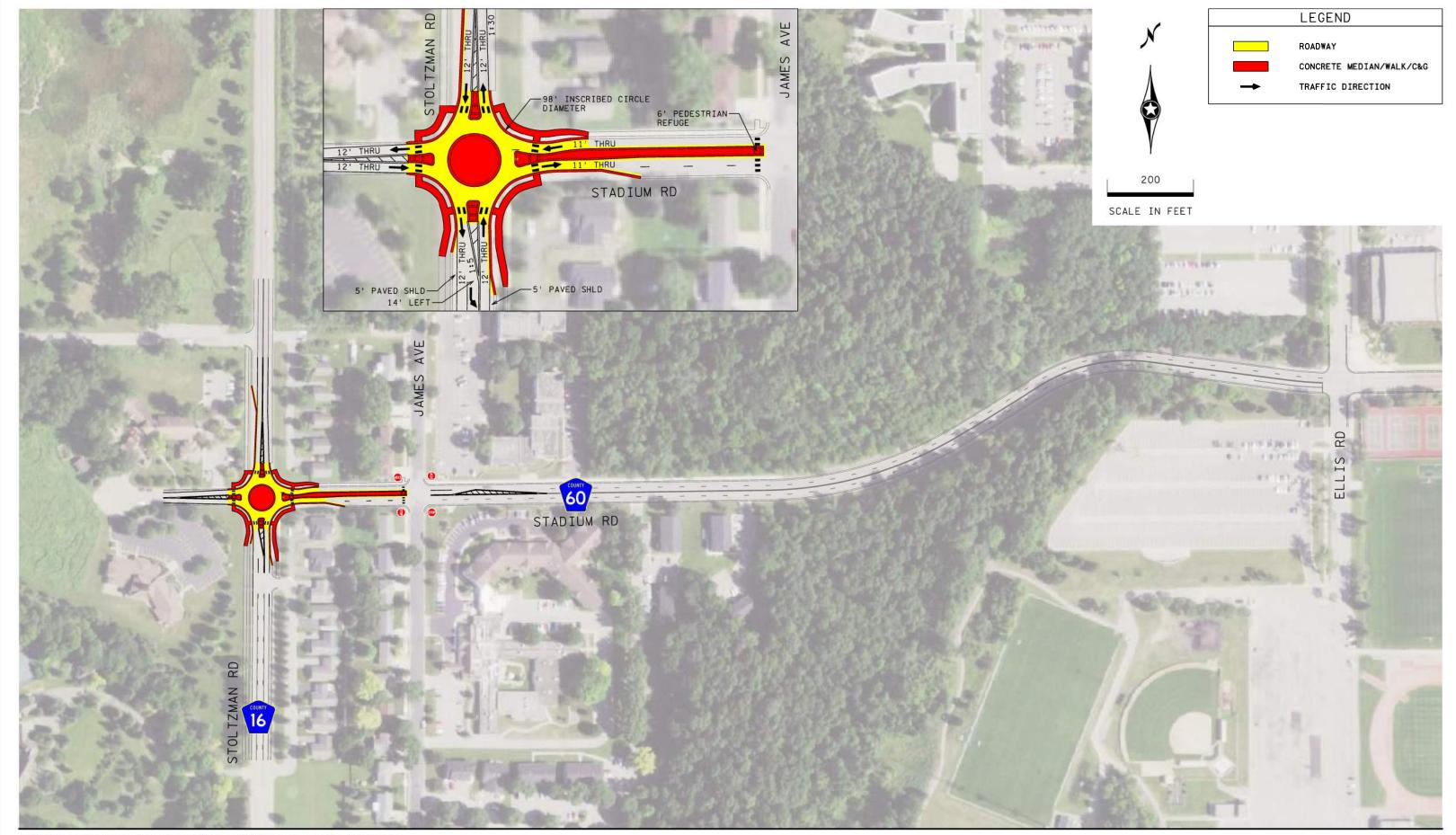







Figure 14 Conceptual Layout Alternative 4

#### 4.9 Stakeholder Information Meetings

Keeping key stakeholders informed throughout the study process was an important element of this ICE. The PMT met with several key stakeholders throughout the duration of the project to give an overview of the study, the ICE process, and to present preliminary alternatives. The meetings and their dates are listed below.

- County Board Meeting Blue Earth County November 23<sup>rd</sup>, 2021
- MAPO Technical Advisory Committee Meeting Mankato Area Planning Organization
   December 8<sup>th</sup>, 2021
- City Council Meeting City of Mankato December 13<sup>th</sup>, 2021
- MAPO Policy Board Meeting Mankato Area Planning Organization December 13<sup>th</sup>, 2021

The PMT also met with facilities staff from Minnesota State University, Mankato to collect input on the intersection's existing operational conditions. Input collected from this meeting was taken into consideration as the PMT made project decisions throughout the duration of the study. The date of this meeting is listed below.

Minnesota State University, Mankato – May 26<sup>th</sup>, 2021

#### 4.10 Alternative Evaluation Matrix

A comparison matrix summarizing the key decision factors with respect to the project goals is provided in **Table 12**. The key decision factors include:

- **Pros and Cons** Qualitative assessment of key advantages and disadvantages of the intersection alternatives
- **Safety Evaluation** Assessment of expected impact on motorist safety and the degree to which existing safety deficiency is improved
- **Traffic Operations Evaluation** Documentation of anticipated future traffic operations
- Economic Evaluation Construction cost estimates and benefit/cost ratios

**Table 12. Alternatives Evaluation Matrix** 

| ternative 0: No Build  Lane Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Characteristics                                                      | Pros and Cons                                                                     | Traffic Operations Analysis                       | Safety Analysis                                                   | Benefit Summary                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|
| Lanc configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The "No Build" alternative carries the current                       | Pros:                                                                             | Existing Operations:                              | Fully or partially addressed known safety issues:                 | 20-Year Operational Benef                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | geometry and traffic control (through/stop) forward.                 | 1. No construction cost                                                           | 2022 Intersection/Worst Approach:                 | None                                                              | N/A                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | geometry and trame control (time agriyotop) for traital              | 2. Familiar traffic control for the intersection                                  | AM: 6.4 (A) / 13.9 (B)                            |                                                                   | ,                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This alternative could be combined with the lane                     | 3. No R/W acquisition needed                                                      | PM: 6.9 (A) / 14.5 (B)                            | Unaddressed known safety issues:                                  | 20-Year Safety Benefit:                        |
| A STATE OF THE PARTY OF THE PAR | configurations sub-alternative A, B, or C.                           | • • • • • • • • • • • • • • • • • • • •                                           |                                                   | 1. Left-turn crashes (2 of 10 crashes)                            | N/A                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                  | Cons:                                                                             | 2032 Intersection/Worst Approach:                 | 2. Bicycle/Pedestrian crashes (2 of 10 crashes)                   | ,                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 1. No improvement to traffic safety or traffic operations                         | AM: 7.9 (A) / 15.4 (B)                            | , ,                                                               | Estimated Construction Co                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 2. No improvement to non-motorized user facilities or safety                      | PM: 7.7 (A) / 15.0 (B)                            | Potential new safety issues:                                      | N/A                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   | None                                                              |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   | 2042 Intersection/Worst Approach:                 |                                                                   | Benefit/Cost Ratio:                            |
| - I HUMAN POLICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                   | AM: 9.1 (A) / 16.9 (C)                            |                                                                   | N/A                                            |
| The state of the s |                                                                      |                                                                                   | PM: 8.5 (A) / 15.9 (C)                            |                                                                   |                                                |
| 1 200 66 KK 网络物质                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| native 1: Through/Stop with Pedestrian Refuge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| Lane Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Characteristics                                                      | Pros and Cons                                                                     | Traffic Operations Analysis                       | Safety Analysis                                                   | Benefit Summary                                |
| AND THE RESERVE OF THE PARTY OF | Lane configurations remain the same as existing. A                   | Pros:                                                                             | Expected Operations:                              | Fully or partially addressed known safety issues:                 | 20-Year Operational Bene                       |
| ₽ PAVED SHLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pedestrian refuge island is constructed at the north                 | 1. Two-stage pedestrian crossing allows pedestrians to focus on crossing one      | 2022 Intersection/Worst Approach:                 | 1. Bicycle/Pedestrian crashes (2 of 10 crashes)                   | \$0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | leg of CSAH 16 (Stoltzman Road).                                     | direction of vehicular travel at a time                                           | AM: 6.4 (A) / 13.9 (B)                            |                                                                   |                                                |
| 6' PEDESTRIAN REFUGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | 2. May reduce vehicle speeds on CSAH 16 (Stoltzman Road) approaches               | PM: 6.9 (A) / 14.5 (B)                            | Unaddressed known safety issues:                                  | 20-Year Safety Benefit:                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   | 1. Left-turn crashes (2 of 10 crashes)                            | \$184,847                                      |
| STADIUM RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | Cons:                                                                             | 2032 Intersection/Worst Approach:                 |                                                                   |                                                |
| 11' RIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      | 1. Would require reconstructing a portion of CSAH 16 (Stoltzman Road) which would | AM: 7.9 (A) / 15.4 (C)                            | Potential new safety issues:                                      | Estimated Construction Co                      |
| 11' THRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | have moderate construction costs                                                  | PM: 7.7 (A) / 15.0 (B)                            |                                                                   | \$72,150                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                   | 2042 Intersection/Worst Approach:                 |                                                                   | Benefit/Cost Ratio:                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   | AM: 9.1 (A) / 16.9 (C)                            |                                                                   | 4.64                                           |
| AAN AAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                                                                   | PM: 8.5 (A) / 15.9 (C)                            |                                                                   |                                                |
| Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| I O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| ernative 2: Through/Stop with RRFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chavastavistics                                                      | Dung and Cone                                                                     | Treffic Operations Analysis                       | Cofety Analysis                                                   | Bonofit Cummanu                                |
| Lane Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Characteristics  Lane configurations remain the same as existing. An | Pros and Cons Pros:                                                               | Traffic Operations Analysis  Expected Operations: | Safety Analysis Fully or partially addressed known safety issues: | Benefit Summary<br>20-Year Operational Benefit |
| ω ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RRFB is installed at the north leg of CSAH 16                        | The RRFB will provide a high visibility crossing for pedestrians. RRFBs have been | 2022 Intersection/Worst Approach:                 | 1. Bicycle/Pedestrian crashes (2 of 10 crashes)                   | \$0                                            |
| 4. PAVED SHLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Stoltzman Road).                                                    | proven to increase yield rate for pedestrian crossings                            | AM: 6.4 (A) / 13.9 (B)                            | 1. Dicycle/r edestriali crashes (2 of 10 crashes)                 | γυ                                             |
| S — BREB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Stortzillali Nodu).                                                 | proven to increase yield rate for pedestridit crossings                           | PM: 6.9 (A) / 14.5 (B)                            | Unaddressed known safety issues:                                  | 20-Year Safety Benefit:                        |
| RRFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | Cons:                                                                             | FIVI. U.5 (A) / 14.3 (D)                          | 1. Left-turn crashes (2 of 10 crashes)                            | \$305,519                                      |
| STADIUM RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                   | 2022 Intersection/Warst Approach                  | 1. Lett-turn Crasnes (2 or 10 Crasnes)                            | 3202,212                                       |
| Mining States and Stat |                                                                      | 1. Long pedestrian crossing distance                                              | 2032 Intersection/Worst Approach:                 | Potential new safety issues:                                      | Estimated Construction Co                      |
| 11' RIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                   | AM: 7.9 (A) / 15.4 (C)                            | rotefitial flew safety issues:                                    | \$30,700                                       |
| + 11' THRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                                                                                   | PM: 7.7 (A) / 15.0 (B)                            |                                                                   | <b>\$30,700</b>                                |
| 11 11110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                   |                                                   |                                                                   |                                                |
| <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                   | 2042 Intersection/Worst Approach:                 |                                                                   | Benefit/Cost Ratio:                            |

AM: 9.1 (A) / 16.9 (C) PM: 8.5 (A) / 15.9 (C) 4.90

#### **Table 12. Alternatives Evaluation Matrix**

| Table 12. Alternatives Evaluation Matrix                    |                                                       |                                                                                      |                                   |                                                   |                              |
|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|------------------------------|
| Alternative 3: Through/Stop with Pedestrian Refuge and RRFB |                                                       |                                                                                      |                                   |                                                   |                              |
| Lane Configuration                                          | Characteristics                                       | Pros and Cons                                                                        | Traffic Operations Analysis       | Safety Analysis                                   | Benefit Summary              |
| 6' PEDESTRIAN                                               | Lane configurations remain the same as existing. A    | Pros:                                                                                | Expected Operations:              | Fully or partially addressed known safety issues: | 20-Year Operational Benefit: |
| REFUGE SHLD                                                 | pedestrian refuge island is constructed at the north  | 1. Two-stage pedestrian crossing allows pedestrians to focus on crossing one         | 2022 Intersection/Worst Approach: | 1. Bicycle/Pedestrian crashes (2 of 10 crashes)   | \$0                          |
|                                                             | leg of CSAH 16 (Stoltzman Road). An RRFB is installed | direction of vehicular travel at a time                                              | AM: 6.4 (A) / 13.9 (B)            |                                                   |                              |
| RRFB                                                        | at the north leg of CSAH 16 (Stoltzman Road).         | 2. May reduce vehicle speeds on CSAH 16 (Stoltzman Road) approaches                  | PM: 6.9 (A) / 14.5 (B)            | Unaddressed known safety issues:                  | 20-Year Safety Benefit:      |
| A S                                                         |                                                       | 3. The RRFB will provide a high visibility crossing for pedestrians. RRFBs have been |                                   | 1. Left-turn crashes (2 of 10 crashes)            | \$392,411                    |
| STADIUM RD                                                  |                                                       | proven to increase yield rate for pedestrian crossings                               | 2032 Intersection/Worst Approach: |                                                   |                              |
| 11' RIGHT                                                   |                                                       |                                                                                      | AM: 7.9 (A) / 15.4 (C)            | Potential new safety issues:                      | Estimated Construction Cost: |
| 11: RIGHT                                                   |                                                       | Cons:                                                                                | PM: 7.7 (A) / 15.0 (B)            |                                                   | \$94,450                     |
|                                                             |                                                       | 1. Would require reconstructing a portion of CSAH 16 (Stoltzman Road) which would    |                                   |                                                   |                              |
| 11                                                          |                                                       | have moderate Construction costs                                                     | 2042 Intersection/Worst Approach: |                                                   | Benefit/Cost Ratio:          |
| AN A                    |                                                       |                                                                                      | AM: 9.1 (A) / 16.9 (C)            |                                                   | 3.08                         |
|                                                             |                                                       |                                                                                      | PM: 8.5 (A) / 15.9 (C)            |                                                   |                              |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |                                                       |                                                                                      |                                   |                                                   |                              |
|                                                             |                                                       |                                                                                      |                                   |                                                   |                              |
| Alternative 4: Compact Roundabout                           |                                                       |                                                                                      |                                   |                                                   |                              |
| Lane Configuration                                          | Characteristics                                       | Pros and Cons                                                                        | Traffic Operations Analysis       | Safety Analysis                                   | Benefit Summary              |
| RD 830                                                      | This alternative constructs an urban compact          | Pros:                                                                                | Expected Operations:              | Fully or partially addressed known safety issues: | 20-Year Operational Benefit: |
| A V                                                         | roundabout at the intersection with a WB lane drop    | 1. Provides operational benefit and reduced delay                                    | 2022 Intersection/Worst Approach: | 1. Left-turn crashes (2 of 10 crashes)            | \$2,042,460                  |
| ES ZM                                                       | prior to James Avenue and a pedestrian refuge on the  | 2. Provides traffic calming - designed for 15 mph speed                              | AM: 5.9 (A) / 12.2 (B)            | 2. Bicycle/Pedestrian crashes (2 of 10 crashes)   |                              |
| AM                                                          | west leg of the CSAH 60 (Stadium Road) and James      | 3. Allows bicyclists/pedestrians to cross one lane of traffic at a time              | PM: 3.5 (A) / 5.1 (A)             |                                                   | 20-Year Safety Benefit:      |
|                                                             |                                                       |                                                                                      |                                   |                                                   | A Section 1997               |



Avenue intersection.

- 4. Driver familiarity with single-lane roundabouts located at the intersection of Stadium Road and Pohl Road to the east

Cons:

- 1. High construction cost
- 2. Non-balanced approach volumes
- 3. May increase rear-end and sideswipe-same crashes
- 4. Special attention required in design for trucks

Unaddressed known safety issues: \$320,581 2032 Intersection/Worst Approach: None AM: 7.7 (A) / 16.6 (C) **Estimated Construction Cost:** PM: 3.8 (A) / 5.8 (A)

2042 Intersection/Worst Approach:

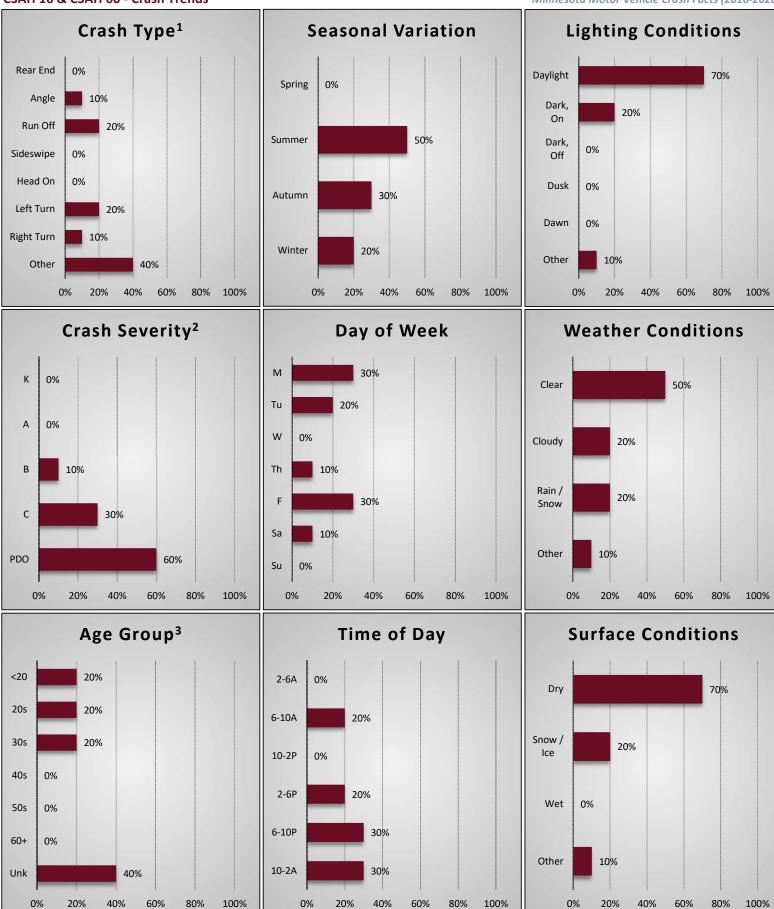
AM: 12.3 (B) / 30.0 (D)

PM: 4.2 (A) / 6.6 (A)

Potential new safety issues: \$750,000 1. May increase rear-end and/or sideswipe crashes Benefit/Cost Ratio:

3.61

#### 5.0 Recommendations


The selection of the recommended alternative for the CSAH 16 (Stoltzman Road) and CSAH 60 (Stadium Road) intersection is made based upon discussions with the PMT, results of the intersection operations and safety analyses, results of the benefit/cost analysis, Minnesota State University, Mankato input, and consideration of the key decision factors presented in the evaluation matrix. Based on the information presented in this ICE, Alternative 2: Rapid Rectangular Flashing Beacon (RRFB) is recommended to be installed at the intersection.

Alternative 2: RRFB does not result in any improvement to traffic operations at the intersection, however it does result in the highest benefit-cost ratio with the lowest overall construction cost. Preliminary alternatives of an all-way stop and traffic signal would both address the existing high delay for the westbound through and left turn movements at the expense of northbound/southbound through movements, but neither alternative meets MnMUTCD warrants and the traffic signal would come at a significant cost. Alternative 4: Compact Roundabout would also address high delay for the westbound through and left turn movements but comes at a significantly higher cost than any other alternative.

Installing an RRFB will provide a high visibility crossing for pedestrians and will likely increase the vehicle yield rate. Alternative 3: Pedestrian Refuges and RRFB could be implemented at the intersection in future years as it comes at a higher construction cost than Alternative 2. The addition of a pedestrian refuge would provide pedestrians with a two-stage crossing, allowing them to focus on crossing one direction of vehicular travel at a time. Additionally, the pedestrian refuge and narrow lanes would provide traffic calming through the intersection.

December 7, 2021

|        |                | Inter             | section Control E     | valuation    |
|--------|----------------|-------------------|-----------------------|--------------|
|        |                | CSAH 16 (Stoltzma | n Road) & CSAH 60 (St | tadium Road) |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
|        |                |                   |                       |              |
| _      |                |                   |                       |              |
| Append | ix A: Detailed | Crasn Tren        | a Anaiysis            |              |
|        |                |                   |                       |              |



 $<sup>^{1}</sup>$ Baseline Crash Type values were calculated using 2004-2015 data as recorded categories changed starting in 2016.

100%

0%

20%

40%

60%

80%

0%

40%

60%

20%

100%

0%

20%

40%

60%

80%

80%

<sup>&</sup>lt;sup>2</sup> Definitions for Crash Severity were changed starting in 2016, all years (2004-2019) were utilized for baseline values.

<sup>&</sup>lt;sup>3</sup> Baseline Age Groups include all drivers involved in crashes, whereas intersection-specific ages are listed for at-fault drivers only.

|                            | CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) |
|----------------------------|---------------------------------------------------|
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
| Appendix B: Detailed All-W | lav-Ston Warrant Analysis                         |
| Appendix Bi Betanea An 11  | ay Stop Warrant Amarysis                          |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |
|                            |                                                   |

**Intersection Control Evaluation** 

AWS WARRANT ANALYSIS - 2022 WARRANT 1 LOCATION: CSAH 16 (Stol CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)

Count Date: Source: Factor: 1.00 Population < 10,000? Speed over 40 mph? VOLUME REQ AT 70% NO NO NO

|                  |                           | NUMBER OF | SPEED |
|------------------|---------------------------|-----------|-------|
| APPROACH         | DESCRIPTION               | LANES     | (MPH) |
| Major Approach 1 | CSAH 16 (Stoltzman Rd) NB | 2         | 35    |
| Major Approach 3 | CSAH 16 (Stoltzman Rd) SB | 2         | 35    |
| Minor Approach 2 | Stadium Court EB          | 1         | 30    |
| Minor Approach 4 | CSAH 60 (Stadium Rd) WB   | 1         | 30    |

If population is less than 10,000; or the major street speed is over 40 mph, seventy percent factor can be applied. Apply seventy percent factor?

|               |     |        |       | M   | AJOR STR |                   |     |           |     |      |         |         |     |          | STREET |           |         |         |          |    |            |    |         | NT MET           |          |          |           |           | WARRANT |                     |            |                   |
|---------------|-----|--------|-------|-----|----------|-------------------|-----|-----------|-----|------|---------|---------|-----|----------|--------|-----------|---------|---------|----------|----|------------|----|---------|------------------|----------|----------|-----------|-----------|---------|---------------------|------------|-------------------|
|               |     | APPROA |       |     |          | WARRANT MET *     |     |           |     | OACH |         |         |     | T APPROA |        |           |         |         | RANT MET |    |            |    |         | SAME H           |          |          |           |           |         | SAME HOU            |            |                   |
|               |     | VOLUM  |       |     | Cond. B  |                   |     | ng Signal | VOL | UME  | Cond. A | Cond. B |     | ) Comb.  |        | ng Signal | Cond. A | Cond. B |          |    | Existing S |    |         | MAJOR AND M      |          |          |           |           | N       | MAJOR AND MIN       |            |                   |
|               |     |        | TOTAL |     |          | 80% of A 80% of B |     |           |     |      |         |         |     | 80% of B |        |           |         |         |          |    | 60% of A   |    |         |                  | Comb.    |          | ng Signal |           |         |                     | kB) Comb.  | Existing Signal   |
| HOUR          | 1   | 3      | 1+3   | 600 | 900      | 480 720           | 360 | 540       | 2   | 4    | 150     | 75      | 120 | 60       | 90     | 45        | 150     | 75      | 120      | 60 | 90         | 45 | Cond. A | Cond. B 80% of A | 80% of B | 60% of A | 60% of B  | Cond. A C | ond. B  | 0% of A or I 80% of | A 80% of B | 60% of A 60% of B |
| 12 - 1 AM     | 35  | 2      | 37    |     |          |                   |     |           | 39  | 5    |         |         |     |          |        |           |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 1 - 2 AM      | 14  | 0      | 14    |     |          |                   |     |           | 13  | 2    |         |         |     |          |        |           |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 2 - 3 AM      | 22  | 0      | 22    |     |          |                   |     |           | 18  | 7    |         |         |     |          |        |           |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 3 - 4 AM      | 23  | 0      | 23    |     |          |                   |     |           | 19  | 1    |         |         |     |          |        |           |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 4 - 5 AM      | 22  | 0      | 22    |     |          |                   |     |           | 8   | 17   |         |         |     |          |        |           |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 5 - 6 AM      | 70  | 0      | 70    |     |          |                   |     |           | 47  | 58   |         |         |     |          |        | X         |         |         |          |    |            | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 6 - 7 AM      | 126 | 0      | 126   |     |          |                   |     |           | 121 | 123  |         | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 7 - 8 AM      | 275 | 0      | 275   |     |          |                   |     |           | 430 | 397  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 8 - 9 AM      | 259 | 3      | 262   |     |          |                   |     |           | 456 | 242  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 9 - 10 AM     | 187 | 4      | 191   |     |          |                   |     |           | 298 | 137  | X       | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 10 - 11 AM    | 235 | 9      | 244   |     |          |                   |     |           | 248 | 121  | X       | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 11 - Noon     | 327 | 6      | 333   |     |          |                   |     |           | 353 | 128  | X       | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 12 - 1 PM     | 343 | 6      | 349   |     |          |                   |     |           | 398 | 152  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 1 - 2 PM      | 316 | 3      | 319   |     |          |                   |     |           | 395 | 158  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 2 - 3 PM      | 362 | 5      | 367   |     |          |                   | X   |           | 395 | 161  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         |                  |          | X        |           |           |         |                     |            | 1                 |
| 3 - 4 PM      | 420 | 5      | 425   |     |          |                   | X   |           | 519 | 145  | X       | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          | X        |           |           |         |                     |            | 1                 |
| 4 - 5 PM      | 583 | 22     | 605   | X   |          | X                 | X   | X         | 549 | 197  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  | X       | X                |          | X        | X         | 1         |         | 1 1                 |            | 1 1               |
| 5 - 6 PM      | 498 | 13     | 511   |     |          | X                 | X   |           | 590 | 184  | X       | X       | X   | X        | X      | X         | X       | X       | X        | X  | X          | X  |         | X                |          | X        |           |           |         | 1 1                 |            | 1                 |
| 6 - 7 PM      | 418 | 13     | 431   |     |          |                   | X   |           | 468 | 120  | X       | X       | X   | X        | X      | X         |         | X       | X        | X  | X          | X  |         |                  |          | X        |           |           |         |                     |            | 1                 |
| 7 - 8 PM      | 280 | 23     | 303   |     |          |                   |     |           | 374 | 114  | X       | X       | X   | X        | X      | X         |         | X       |          | X  | X          | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 8 - 9 PM      | 219 | 0      | 219   |     |          |                   |     |           | 286 | 72   | X       | X       | X   | X        | X      | X         |         |         |          | X  |            | X  |         |                  |          |          |           |           |         |                     |            |                   |
| 9 - 10 PM     | 165 | 3      | 168   |     |          |                   |     |           | 180 | 38   | X       | X       | X   | X        | X      | X         |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 10 - 11 PM    | 110 | 0      | 110   |     |          |                   |     |           | 132 | 15   |         | X       | X   | X        | X      | X         |         |         |          |    |            |    |         |                  |          |          |           |           |         |                     |            |                   |
| 11 - Midnight | 64  | 4      | 68    |     |          |                   |     |           | 73  | 8    |         |         |     | X        |        | X         |         |         |          |    |            |    | Ī       |                  |          |          |           |           |         |                     |            | 1                 |

#### SUMMARY OF RESULTS:

| SCHEIRI OF RESCEED.           |          |   |                              |
|-------------------------------|----------|---|------------------------------|
| Warrant 1 - Cond. A was       | not met: | 1 | hours satisfied requirements |
| Warrant 1 - Cond. B was       | not met: | 0 | hours satisfied requirements |
| Warrant 1 - Combine A & B was | not met: | 0 | hours satisfied requirements |
| Existing Signal Warrant A     | not met: | 5 | hours satisfied requirements |
| Existing Signal Warrant B     | not met: | 1 | hours satisfied requirements |
|                               |          |   |                              |

AWSC Warrant Analysis\_2022 AWSC Warrant Analysis\_2022(1st\_MainTab), 11/12/2021

AWS WARRANT ANALYSIS - 2042 WARRANT 1 LOCATION: CSAH 16 (Stol CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)

Count Date: Source: Factor: 1.00 Population < 10,000? Speed over 40 mph? VOLUME REQ AT 70% NO NO NO

|                  |                           | NUMBER OF | SPEED |
|------------------|---------------------------|-----------|-------|
| APPROACH         | DESCRIPTION               | LANES     | (MPH) |
| Major Approach 1 | CSAH 16 (Stoltzman Rd) NB | 2         | 35    |
| Major Approach 3 | CSAH 16 (Stoltzman Rd) SB | 2         | 35    |
| Minor Approach 2 | Stadium Court EB          | 1         | 30    |
| Minor Approach 4 | CSAH 60 (Stadium Rd) WB   | 1         | 30    |

If population is less than 10,000; or the major street speed is over 40 mph, seventy percent factor can be applied. Apply seventy percent factor?

|                       |          | MAJOR STREET APPROACH WARRANT MET * |    |          |           |                   |     |              |          |       |         |       |         |          | MIN | OR STREET    |          |         |         |        |          |           |         |         | WARRANT MET       |          |           | T       |         | - W.        | ARRANT MET                                       |          |                                                  |
|-----------------------|----------|-------------------------------------|----|----------|-----------|-------------------|-----|--------------|----------|-------|---------|-------|---------|----------|-----|--------------|----------|---------|---------|--------|----------|-----------|---------|---------|-------------------|----------|-----------|---------|---------|-------------|--------------------------------------------------|----------|--------------------------------------------------|
|                       |          |                                     |    |          |           | WARRANT MET       |     |              |          | ROACH |         |       | RRANT M |          |     |              |          |         | RANT ME |        | _        |           |         |         | SAME HOURS ON     |          |           |         |         |             | ME HOURS ON                                      |          | Į.                                               |
|                       |          | VOLU                                |    |          | A Cond. I |                   |     | sting Signal |          | LUME  | Cond. A | Cond. |         | B) Comb. |     | sting Signal |          | Cond. B |         | Comb.  |          | ng Signal |         | MAJ     | OR AND MINOR ST   |          |           |         |         | MAJOR A     | ND MINOR STREE                                   |          |                                                  |
| HOUD                  |          |                                     | TO |          | 000       | 80% of A 80% of I |     |              | <u> </u> |       | 150     | 75    |         | _        | _   | A 60% of B   |          | 75      |         |        | 60% of A |           |         | C 1 D   | (A&B) Comb.       |          | ng Signal | G 1.4   | CIP     | 100/ 61     | (A&B) Comb.                                      | Existin  | ng Signal                                        |
| HOUR                  | 1        | 3                                   | 1  | + 3 600  | 900       | 480 720           | 360 | 540          | 45       | 4     | 150     | /5    | 120     | 60       | 90  | 45           | 150      | /5      | 120     | 60     | 90       | 45        | Cond. A | Cond. B | 80% of A 80% of B | 60% of A | 60% of B  | Cond. A | Cond. B | 80% of A or | 1 80% of A 80% of B                              | 60% of A | 60% of B                                         |
| 12 - 1 AM<br>1 - 2 AM | 40       | 2                                   |    | 2        |           |                   |     |              | 45       | 6     |         |       |         |          | -   | X            | <u> </u> |         |         |        |          |           |         |         |                   |          |           |         | +       | +           |                                                  |          | <del>                                     </del> |
| 2 - 3 AM              | 17       | 0                                   |    | .7       |           |                   |     |              | 16       | 2     |         |       |         |          | -   |              | <u> </u> |         |         |        |          |           |         |         |                   |          |           |         | +       | +           |                                                  |          | <del>                                     </del> |
| 2 - 3 AM<br>3 - 4 AM  | 26       | 0                                   |    | 26       | _         |                   |     |              | 23       | 9     |         |       |         |          |     |              | -        |         |         |        | 1        | 1         | 1       |         | +                 | -        |           | 1       | +       | +           |                                                  | +        | <del>                                     </del> |
| 4 - 5 AM              | 27<br>25 | 0                                   |    | 27       |           | +                 | _   |              | 23       | 20    |         | -     |         |          | _   |              | 1        |         |         |        | -        | -         |         | -       | +                 | +        | -         |         | +       | +           | <del>                                     </del> | +        | <del>                                     </del> |
| 5 - 6 AM              | 78       | 0                                   |    | 25<br>78 |           | +                 | _   |              | 54       |       |         | -     |         |          | _   | v            | 1        |         |         | v      | -        | v         |         | -       | +                 | +        | -         |         | +       | +           | <del>                                     </del> | +        | <del>                                     </del> |
| 6 - 7 AM              | 142      | 0                                   |    | 42       |           | +                 | _   |              | 135      | 138   |         | v     | v       | X        | v   | X            | 1        | v       | v       | A<br>V | v        | X         |         | -       | +                 | +        | -         |         | +       | +           | <del>                                     </del> | +        | <del>                                     </del> |
| 7 - 8 AM              | 305      | 0                                   |    | 05       | -         |                   | -   |              | 477      | 442   | v       | v v   | v v     | v        | v v | X            | v        | v       | v       | v      | v        | X         | -       |         |                   |          |           | +       | +       | +           | -                                                | +        | +                                                |
| 8 - 9 AM              | 290      | 2                                   | 2  |          | -         |                   | -   |              | 507      | 269   | v v     | v v   | v v     | v        | v v | X            | v        | v       | v       | v      | v        | X         | -       |         |                   |          |           | +       | +       | +           | -                                                | +        | +                                                |
| 9 - 10 AM             | 210      | 5                                   |    | 15       |           |                   |     |              | 333      | 154   | Y Y     | v     | v v     | Y Y      | v v | X            | v v      | V Y     | v       | Y Y    | Y Y      | X         |         |         | 1                 |          |           |         | +       | +           | <del> </del>                                     | +        | +                                                |
| 10 - 11 AM            | 262      | 12                                  |    |          |           |                   |     |              | 277      | 137   | Y Y     | v     | v v     | Y Y      | v v | X            | Λ        | V Y     | v       | Y Y    | Y Y      | X         |         |         | 1                 |          |           |         | +       | +           | <del> </del>                                     | +        | +                                                |
| 11 - Noon             | 363      | 7                                   | 3  |          |           |                   | v   |              | 392      | 144   | Y Y     | v     | v v     | Y Y      | v v | X            | 1        | X       | v       | Y Y    | Y Y      | X         |         |         | 1                 | X        |           |         | +       | +           | <del> </del>                                     | 1        | +                                                |
| 12 - 1 PM             | 379      | 6                                   | 3  |          |           |                   | Y   |              | 442      | 170   | Y       | Y     | Y       | Y        | Y   | X            | Y        | Y       | Y       | Y      | Y        | X         |         |         |                   | X        |           |         | +       | +           |                                                  | 1        | +                                                |
| 1 - 2 PM              | 352      | 3                                   | 3: |          |           |                   | Λ   |              | 439      | 176   | Y       | Y     | Y       | Y        | Y   | Y            | Y        | Y       | Y       | Y      | Y        | X         |         |         |                   | Λ        |           |         | +       | +           |                                                  | +        | +                                                |
| 2 - 3 PM              | 401      | 5                                   |    | 06       |           |                   | x   |              | 439      | 180   | X       | X     | X       | X        | X   | X            | X        | X       | X       | X      | X        | X         | 1       |         |                   | X        |           | 1       | +       | +           |                                                  | 1        | <del>                                     </del> |
| 3 - 4 PM              | 467      | 5                                   |    | 72       |           |                   | X   |              | 576      | 163   | X       | X     | X       | X        | X   | X            | X        | X       | X       | X      | X        | X         | 1       |         |                   | X        |           | 1       | +       | +           |                                                  | 1        | <del>                                     </del> |
| 4 - 5 PM              | 647      | 27                                  |    |          |           | X                 | X   |              | 607      | 219   | X       | X     | X       | X        | X   | X            | X        | X       | X       | X      | X        | X         | X       |         | X                 | X        | X         | 1       | +       | 1           | 1                                                | 1        | 1                                                |
| 5 - 6 PM              | 554      | 15                                  | _  | 69       |           | X                 | X   |              | 655      | 205   | X       | X     | X       | X        | X   | X            | X        | X       | X       | X      | X        | X         |         |         | X                 | X        | X         | •       | +       | 1           | 1                                                | 1        | 1                                                |
| 6 - 7 PM              | 464      | 16                                  |    | 80       |           | X                 | X   |              | 521      | 135   | X       | X     | X       | X        | X   | X            |          | X       | X       | X      | X        | X         |         |         | X                 | X        |           | 1       | +       | 1           | 1                                                | 1        | <del>                                     </del> |
| 7 - 8 PM              | 313      | 28                                  |    |          |           |                   |     |              | 415      | 127   | X       | X     | X       | X        | X   | X            | 1        | X       | X       | X      | X        | X         |         | 1       |                   | 1        | +         | 1       | +       | †           | 1 -                                              | +        | <b>†</b>                                         |
| 8 - 9 PM              | 245      | 0                                   | _  | 45       |           | 1                 |     |              | 319      | 82    | X       | X     | X       | X        | X   | X            | 1        | X       | 1       | X      |          | X         |         |         |                   |          |           | 1       | 1       | <b>†</b>    |                                                  | +        | †                                                |
| 9 - 10 PM             | 185      | 3                                   |    | 88       |           |                   |     |              | 200      | 45    | X       | X     | X       | X        | X   | X            |          |         |         |        |          | X         |         |         |                   |          |           |         | 1       | t           |                                                  | 1        |                                                  |
| 10 - 11 PM            | 123      | 0                                   | 1: | 23       |           |                   |     |              | 148      | 19    |         | X     | X       | X        | X   | X            |          |         |         |        |          |           |         |         |                   |          |           |         | 1       |             |                                                  | 1        |                                                  |
| 11 - Midnight         | 71       | 5                                   |    | 76       |           |                   |     |              | 82       | 10    |         | X     |         | X        |     | X            |          |         |         |        |          |           | 1       |         |                   |          |           | 1       | 1       | t           |                                                  | 1        |                                                  |

# SUMMARY OF RESULTS:

| SCHRIMINI OF RESCEED.         |          |   |                              |
|-------------------------------|----------|---|------------------------------|
| Warrant 1 - Cond. A was       | not met: | 1 | hours satisfied requirements |
| Warrant 1 - Cond. B was       | not met: | 0 | hours satisfied requirements |
| Warrant 1 - Combine A & B was | not met: | 0 | hours satisfied requirements |
| Existing Signal Warrant A     | not met: | 7 | hours satisfied requirements |
| Existing Signal Warrant B     | not met: | 2 | hours satisfied requirements |
|                               |          |   |                              |

AWSC Warrant Analysis\_2042 AWSC Warrant Analysis\_2042(1st\_MainTab), 11/12/2021

|                        | intersection Control Evaluation                   |
|------------------------|---------------------------------------------------|
|                        | CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
|                        |                                                   |
| Appendix C: Detailed S | Signal Warrant Analysis                           |

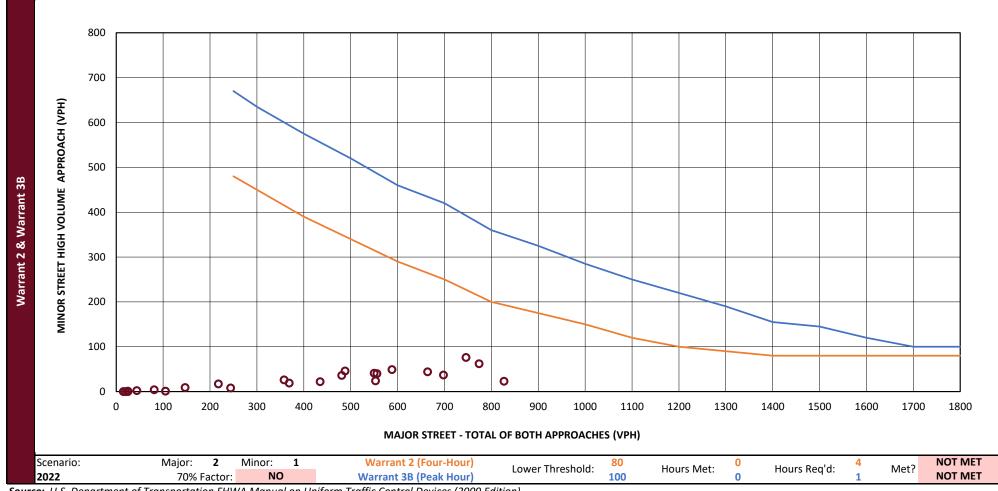
#### **TRAFFIC SIGNAL WARRANTS ANALYSIS - FORECAST 2022**

120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



| ρι | Pro                      | oject Data                                          |  | Analysis  | Volumes   | Direction | Analysis Approach | Roadway                | Speed | Lanes | RT % |
|----|--------------------------|-----------------------------------------------------|--|-----------|-----------|-----------|-------------------|------------------------|-------|-------|------|
| Ĭ  | <b>Project:</b> 120-0105 | <b>Project:</b> 120-0105_MAPO                       |  |           | Scenario: | NB        | Major Approach 1  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| gr | Intersection: CSAH 16    | ersection: CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadio |  | 9/28/2021 | 2022      | SB        | Major Approach 3  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| 춫  | Population < 10,000?     | NO                                                  |  | Analysis: | Format:   | EB        | Minor Approach 2  | Stadium Court          | 30    | 1     | 0%   |
| Be | 70% Factor Used:         | NO                                                  |  | SRM       | 15 MIN    | WB        | Minor Approach 4  | CSAH 60 (Stadium Rd)   | 30    | 1     | 0%   |

|                  |            | Majo | r Approa | aches | Volum | es Met | Mino | r Approa | ches  | Volum | es Met |      |       | Traffic S | ignal Warr | ants |         |        | Volum | es Met | AWS W | arrants |
|------------------|------------|------|----------|-------|-------|--------|------|----------|-------|-------|--------|------|-------|-----------|------------|------|---------|--------|-------|--------|-------|---------|
|                  | Hour       |      | Major    | Total | Α     | В      |      | Minor    | Max   | Α     | В      | Same | Hours | 80% A 80% | B 4-HR     | Peak | Existin | ng 60% | C1    | C2     | Same  | 80%     |
|                  |            | 1    | 3        | TOLAI | 600   | 900    | 2    | 4        | IVIAX | 150   | 75     | 1A   | 1B    | 1C        | 2          | 3B   | 1A      | 1B     | 300   | 200    | С     | D       |
|                  | 12 - 1 AM  | 5    | 39       | 44    |       |        | 2    | 2        | 2     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 1 - 2 AM   | 2    | 13       | 15    |       |        | 0    | 0        | 0     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 2 - 3 AM   | 7    | 18       | 25    |       |        | 0    | 1        | 1     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 3 - 4 AM   | 1    | 19       | 20    |       |        | 0    | 0        | 0     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 4 - 5 AM   | 17   | 8        | 25    |       |        | 0    | 0        | 0     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 5 - 6 AM   | 58   | 47       | 105   |       |        | 0    | 1        | 1     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 6 - 7 AM   | 123  | 121      | 244   |       |        | 0    | 8        | 8     |       |        |      |       |           |            |      |         |        |       |        |       |         |
| Sis              | 7 - 8 AM   | 397  | 430      | 827   | Х     |        | 0    | 23       | 23    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| Š                | 8 - 9 AM   | 242  | 456      | 698   | Х     |        | 3    | 37       | 37    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| Žų.              | 9 - 10 AM  | 137  | 298      | 435   |       |        | 3    | 22       | 22    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| Warrant Analysis | 10 - 11 AM | 121  | 248      | 369   |       |        | 9    | 19       | 19    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| rar              | 11 - Noon  | 128  | 353      | 481   |       |        | 6    | 36       | 36    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| /ar              | 12 - 1 PM  | 152  | 398      | 550   |       |        | 4    | 41       | 41    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
| >                | 1 - 2 PM   | 158  | 395      | 553   |       |        | 3    | 24       | 24    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
|                  | 2 - 3 PM   | 161  | 395      | 556   |       |        | 5    | 40       | 40    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
|                  | 3 - 4 PM   | 145  | 519      | 664   | Х     |        | 4    | 44       | 44    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
|                  | 4 - 5 PM   | 197  | 549      | 746   | Х     |        | 21   | 76       | 76    |       | Х      |      |       | X         |            |      |         | Х      | Х     |        |       |         |
|                  | 5 - 6 PM   | 184  | 590      | 774   | Х     |        | 13   | 62       | 62    |       |        |      |       | X         |            |      |         | Х      | Х     |        |       |         |
|                  | 6 - 7 PM   | 120  | 468      | 588   |       |        | 13   | 49       | 49    |       |        |      |       |           |            |      |         | Х      | Х     |        |       |         |
|                  | 7 - 8 PM   | 114  | 374      | 488   |       |        | 20   | 46       | 46    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
|                  | 8 - 9 PM   | 72   | 286      | 358   |       |        | 0    | 26       | 26    |       |        |      |       |           |            |      |         |        | Х     |        |       |         |
|                  | 9 - 10 PM  | 38   | 180      | 218   |       |        | 2    | 17       | 17    |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 10 - 11 PM | 15   | 132      | 147   |       |        | 0    | 9        | 9     |       |        |      |       |           |            |      |         |        |       |        |       |         |
|                  | 11 - 12 AM | 8    | 73       | 81    |       |        | 4    | 2        | 4     |       |        |      |       |           |            |      |         |        |       |        |       |         |


| >   | Warrant & Description                                       | Met | Req'd. | Warrant Met? | Warrant & Description                                      | Met  | Req'd. | Warrant Met? |
|-----|-------------------------------------------------------------|-----|--------|--------------|------------------------------------------------------------|------|--------|--------------|
| Jar | Warrant 1A: Eight-Hour (Minimum Vehicular Volume)           | 0   | 8      | NOT MET      | Existing Signal Justification: Condition A                 | 0    | 8      | NOT MET      |
| שה  | Warrant 1B: Eight-Hour (Interruption of Continuous Traffic) | 0   | 8      | NOT MET      | Existing Signal Justification: Condition B                 | 3    | 8      | NOT MET      |
| Sul | Warrant 1C: Eight-Hour (Combination of Warrants)            | 0   | 8      | NOT MET      | All-Way Stop: Criteria A (Signal Justified)                | -    | -      | NOT MET      |
| Ħ   | Warrant 2: Four-Hour                                        | 0   | 4      | NOT MET      | All-Way Stop: Criteria B (Crash History - 12 Months)       | 1    | 5      | NOT MET      |
| rai | Warrant 3B: Peak Hour                                       | 0   | 1      | NOT MET      | All-Way Stop: Criteria C1 (Minimum Volumes)                | 13   | 8      | MET          |
| Val | Warrant 7B: Crash History - 12 Months                       | 1   | 5      | NOT MET      | All-Way Stop: Criteria C2 (Minor Approach - Maximum Delay) | 10.6 | 30     | NOT MET      |
| >   | Warrant 7C: Condition A or Condition B (80%)                | 2   | 8      | NOT MET      | All-Way Stop: Criteria D (80% of Criteria B, C1, & C2)     | 14   | 8      | NOT MET      |

**Source:** U.S. Department of Transportation FHWA Manual on Uniform Traffic Control Devices (2009 Edition)

#### TRAFFIC SIGNAL WARRANTS ANALYSIS

120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)





Source: U.S. Department of Transportation FHWA Manual on Uniform Traffic Control Devices (2009 Edition)

#### Warrant 2 (Four-Hour) Notes:

100%: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

#### Warrant 3B (Peak Hour) Notes:

100%: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

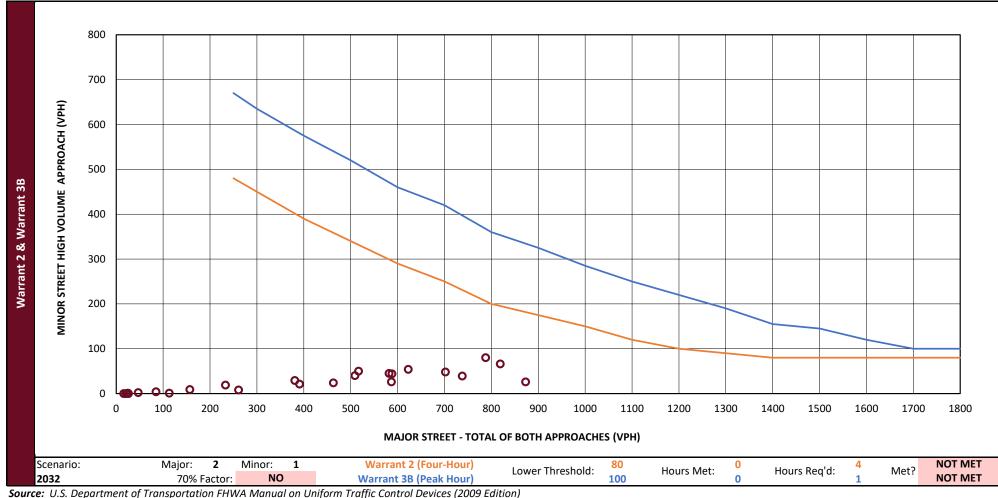
#### TRAFFIC SIGNAL WARRANTS ANALYSIS - FORECAST 2032

120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



| ρι | Proje                      | ct Data                        | Analysis  | Volumes   | Direction | Analysis Approach | Roadway                | Speed | Lanes | RT % |
|----|----------------------------|--------------------------------|-----------|-----------|-----------|-------------------|------------------------|-------|-------|------|
| Ĭ  | <b>Project:</b> 120-0105_N | MAPO                           | Date:     | Scenario: | NB        | Major Approach 1  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| gr | Intersection: CSAH 16 (St  | toltzman Rd) & CSAH 60 (Stadiı | 9/28/2021 | 2032      | SB        | Major Approach 3  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| 춫  | Population < 10,000?       | NO                             | Analysis: | Format:   | EB        | Minor Approach 2  | Stadium Court          | 30    | 1     | 0%   |
| Bē | 70% Factor Used:           | NO                             | SRM       | 15 MIN    | WB        | Minor Approach 4  | CSAH 60 (Stadium Rd)   | 30    | 1     | 0%   |

|                  |            | Majo | r Approa | aches | Volum | es Met | Mino | r Approa | aches | Volum | es Met |      |       | Traffic Si | gnal Warr | ants |         |        | Volum | es Met | AWS W | arrants |
|------------------|------------|------|----------|-------|-------|--------|------|----------|-------|-------|--------|------|-------|------------|-----------|------|---------|--------|-------|--------|-------|---------|
|                  | Hour       |      | Major    | Total | Α     | В      |      | Minor    | Max   | Α     | В      | Same | Hours | 80% A 80%  | B 4-HR    | Peak | Existir | ng 60% | C1    | C2     | Same  | 80%     |
|                  |            | 1    | 3        | TOLAI | 600   | 900    | 2    | 4        | IVIdX | 150   | 75     | 1A   | 1B    | 1C         | 2         | 3B   | 1A      | 1B     | 300   | 200    | С     | D       |
|                  | 12 - 1 AM  | 5    | 42       | 47    |       |        | 2    | 2        | 2     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 1 - 2 AM   | 2    | 14       | 16    |       |        | 0    | 0        | 0     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 2 - 3 AM   | 7    | 18       | 25    |       |        | 0    | 1        | 1     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 3 - 4 AM   | 1    | 20       | 21    |       |        | 0    | 0        | 0     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 4 - 5 AM   | 18   | 8        | 26    |       |        | 0    | 0        | 0     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 5 - 6 AM   | 62   | 51       | 113   |       |        | 0    | 1        | 1     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 6 - 7 AM   | 131  | 130      | 261   |       |        | 0    | 8        | 8     |       |        |      |       |            |           |      |         |        |       |        |       |         |
| sis              | 7 - 8 AM   | 419  | 454      | 873   | Х     |        | 0    | 26       | 26    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
| Š                | 8 - 9 AM   | 257  | 481      | 738   | Х     |        | 3    | 39       | 39    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
| ξ                | 9 - 10 AM  | 148  | 315      | 463   |       |        | 3    | 24       | 24    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
| Warrant Analysis | 10 - 11 AM | 129  | 262      | 391   |       |        | 9    | 21       | 21    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
| rai              | 11 - Noon  | 137  | 372      | 509   |       |        | 6    | 40       | 40    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
| /ar              | 12 - 1 PM  | 162  | 420      | 582   |       |        | 4    | 45       | 45    |       |        |      |       |            |           |      |         | Х      | Х     |        |       |         |
| >                | 1 - 2 PM   | 170  | 417      | 587   |       |        | 3    | 26       | 26    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
|                  | 2 - 3 PM   | 172  | 416      | 588   |       |        | 5    | 44       | 44    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
|                  | 3 - 4 PM   | 155  | 547      | 702   | Х     |        | 4    | 48       | 48    |       |        |      |       |            |           |      |         | Х      | Х     |        |       |         |
|                  | 4 - 5 PM   | 210  | 578      | 788   | Х     |        | 22   | 80       | 80    |       | Х      |      |       | X          |           |      |         | Х      | Х     |        |       |         |
|                  | 5 - 6 PM   | 196  | 623      | 819   | Х     |        | 13   | 66       | 66    |       |        |      |       | X          |           |      |         | Х      | Х     |        |       |         |
|                  | 6 - 7 PM   | 129  | 494      | 623   | Х     |        | 13   | 54       | 54    |       |        |      |       |            |           |      |         | Х      | Х     |        |       |         |
|                  | 7 - 8 PM   | 123  | 394      | 517   |       |        | 22   | 50       | 50    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
|                  | 8 - 9 PM   | 79   | 302      | 381   |       |        | 0    | 29       | 29    |       |        |      |       |            |           |      |         |        | Х     |        |       |         |
|                  | 9 - 10 PM  | 41   | 192      | 233   |       |        | 2    | 19       | 19    |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 10 - 11 PM | 15   | 142      | 157   |       |        | 0    | 9        | 9     |       |        |      |       |            |           |      |         |        |       |        |       |         |
|                  | 11 - 12 AM | 8    | 77       | 85    |       |        | 4    | 2        | 4     |       |        |      |       |            |           |      |         |        |       |        |       |         |


| >   | Warrant & Description                                       | Met | Req'd. | Warrant Met? | Warrant & Description                                      | Met  | Req'd. | Warrant Met? |
|-----|-------------------------------------------------------------|-----|--------|--------------|------------------------------------------------------------|------|--------|--------------|
| Jar | Warrant 1A: Eight-Hour (Minimum Vehicular Volume)           | 0   | 8      | NOT MET      | Existing Signal Justification: Condition A                 | 0    | 8      | NOT MET      |
| שה  | Warrant 1B: Eight-Hour (Interruption of Continuous Traffic) | 0   | 8      | NOT MET      | Existing Signal Justification: Condition B                 | 5    | 8      | NOT MET      |
| Sul | Warrant 1C: Eight-Hour (Combination of Warrants)            | 0   | 8      | NOT MET      | All-Way Stop: Criteria A (Signal Justified)                | -    | -      | NOT MET      |
| Ħ   | Warrant 2: Four-Hour                                        | 0   | 4      | NOT MET      | All-Way Stop: Criteria B (Crash History - 12 Months)       | 1    | 5      | NOT MET      |
| rai | Warrant 3B: Peak Hour                                       | 0   | 1      | NOT MET      | All-Way Stop: Criteria C1 (Minimum Volumes)                | 14   | 8      | MET          |
| Val | Warrant 7B: Crash History - 12 Months                       | 1   | 5      | NOT MET      | All-Way Stop: Criteria C2 (Minor Approach - Maximum Delay) | 15.3 | 30     | NOT MET      |
| >   | Warrant 7C: Condition A or Condition B (80%)                | 2   | 8      | NOT MET      | All-Way Stop: Criteria D (80% of Criteria B, C1, & C2)     | 15   | 8      | NOT MET      |

**Source:** U.S. Department of Transportation FHWA Manual on Uniform Traffic Control Devices (2009 Edition)

#### TRAFFIC SIGNAL WARRANTS ANALYSIS

120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)





#### Warrant 2 (Four-Hour) Notes:

100%: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

#### Warrant 3B (Peak Hour) Notes:

100%: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

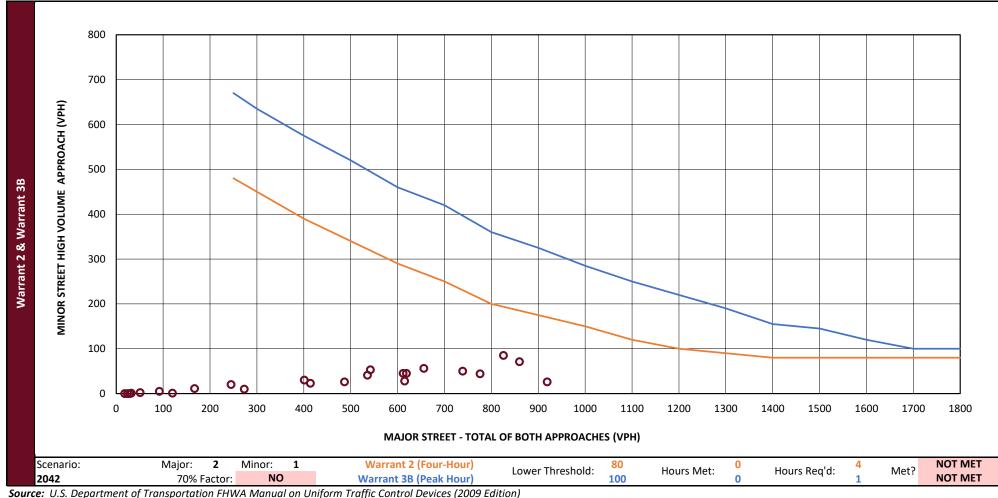
#### TRAFFIC SIGNAL WARRANTS ANALYSIS - FORECAST 2042

120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



| ρι | Project Da                     | ta                        | Analysis  | Volumes   | Direction | Analysis Approach | Roadway                | Speed | Lanes | RT % |
|----|--------------------------------|---------------------------|-----------|-----------|-----------|-------------------|------------------------|-------|-------|------|
| Ĭ  | <b>Project:</b> 120-0105_MAPC  | )                         | Date:     | Scenario: | NB        | Major Approach 1  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| gr | Intersection: CSAH 16 (Stoltzn | nan Rd) & CSAH 60 (Stadii | 9/28/2021 | 2042      | SB        | Major Approach 3  | CSAH 16 (Stoltzman Rd) | 35    | 2     | 100% |
| 춫  | Population < 10,000?           | 0                         | Analysis: | Format:   | EB        | Minor Approach 2  | Stadium Court          | 30    | 1     | 0%   |
| Bē | <b>70% Factor Used:</b> N      | 0                         | SRM       | 15 MIN    | WB        | Minor Approach 4  | CSAH 60 (Stadium Rd)   | 30    | 1     | 0%   |

|                  |            | Majo | r Approa | aches | Volum | es Met | Mino | r Approa | aches | Volum | es Met |      |       | Traffic S | gnal Warr | ants |         |        | Volum | es Met | AWS W | arrants |
|------------------|------------|------|----------|-------|-------|--------|------|----------|-------|-------|--------|------|-------|-----------|-----------|------|---------|--------|-------|--------|-------|---------|
|                  | Hour       |      | Major    |       | Α     | В      |      | Minor    | Max   | Α     | В      | Same | Hours | 80% A 80% | B 4-HR    | Peak | Existir | ng 60% | C1    | C2     | Same  | 80%     |
|                  |            | 1    | 3        | TOLAI | 600   | 900    | 2    | 4        | IVIdX | 150   | 75     | 1A   | 1B    | 1C        | 2         | 3B   | 1A      | 1B     | 300   | 200    | С     | D       |
|                  | 12 - 1 AM  | 6    | 45       | 51    |       |        | 2    | 2        | 2     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 1 - 2 AM   | 2    | 16       | 18    |       |        | 0    | 0        | 0     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 2 - 3 AM   | 9    | 23       | 32    |       |        | 0    | 1        | 1     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 3 - 4 AM   | 1    | 23       | 24    |       |        | 0    | 0        | 0     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 4 - 5 AM   | 20   | 9        | 29    |       |        | 0    | 0        | 0     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 5 - 6 AM   | 66   | 54       | 120   |       |        | 0    | 1        | 1     |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 6 - 7 AM   | 138  | 135      | 273   |       |        | 0    | 10       | 10    |       |        |      |       |           |           |      |         |        |       |        |       |         |
| .s               | 7 - 8 AM   | 442  | 477      | 919   | Х     | Х      | 0    | 26       | 26    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
| Š                | 8 - 9 AM   | 269  | 507      | 776   | Х     |        | 3    | 44       | 44    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
| Ans              | 9 - 10 AM  | 154  | 333      | 487   |       |        | 4    | 26       | 26    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
| Warrant Analysis | 10 - 11 AM | 137  | 277      | 414   |       |        | 12   | 23       | 23    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
| rar              | 11 - Noon  | 144  | 392      | 536   |       |        | 7    | 41       | 41    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
| /ar              | 12 - 1 PM  | 170  | 442      | 612   | Х     |        | 4    | 45       | 45    |       |        |      |       |           |           |      |         | Х      | Х     |        |       |         |
| >                | 1 - 2 PM   | 176  | 439      | 615   | Х     |        | 3    | 28       | 28    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
|                  | 2 - 3 PM   | 180  | 439      | 619   | Х     |        | 5    | 45       | 45    |       |        |      |       |           |           |      |         | Х      | Х     |        |       |         |
|                  | 3 - 4 PM   | 163  | 576      | 739   | Х     |        | 4    | 50       | 50    |       |        |      |       |           |           |      |         | Х      | Х     |        |       |         |
|                  | 4 - 5 PM   | 219  | 607      | 826   | Х     |        | 26   | 85       | 85    |       | Х      |      |       | X         |           |      |         | Х      | Х     |        |       |         |
|                  | 5 - 6 PM   | 205  | 655      | 860   | Х     |        | 15   | 71       | 71    |       |        |      |       | X         |           |      |         | Х      | Х     |        |       |         |
|                  | 6 - 7 PM   | 135  | 521      | 656   | Х     |        | 16   | 56       | 56    |       |        |      |       |           |           |      |         | Х      | Х     |        |       |         |
|                  | 7 - 8 PM   | 127  | 415      | 542   |       |        | 24   | 53       | 53    |       |        |      |       |           |           |      |         | Х      | X     |        |       |         |
|                  | 8 - 9 PM   | 82   | 319      | 401   |       |        | 0    | 30       | 30    |       |        |      |       |           |           |      |         |        | Х     |        |       |         |
|                  | 9 - 10 PM  | 45   | 200      | 245   |       |        | 2    | 20       | 20    |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 10 - 11 PM | 19   | 148      | 167   |       |        | 0    | 11       | 11    |       |        |      |       |           |           |      |         |        |       |        |       |         |
|                  | 11 - 12 AM | 10   | 82       | 92    |       |        | 5    | 2        | 5     |       |        |      |       |           |           |      |         |        |       |        |       |         |


| >   | Warrant & Description                                       | Met | Req'd. | Warrant Met? | Warrant & Description                                      | Met  | Req'd. | Warrant Met? |
|-----|-------------------------------------------------------------|-----|--------|--------------|------------------------------------------------------------|------|--------|--------------|
| Jar | Warrant 1A: Eight-Hour (Minimum Vehicular Volume)           | 0   | 8      | NOT MET      | Existing Signal Justification: Condition A                 | 0    | 8      | NOT MET      |
| שה  | Warrant 1B: Eight-Hour (Interruption of Continuous Traffic) | 0   | 8      | NOT MET      | Existing Signal Justification: Condition B                 | 7    | 8      | NOT MET      |
| Sul | Warrant 1C: Eight-Hour (Combination of Warrants)            | 0   | 8      | NOT MET      | All-Way Stop: Criteria A (Signal Justified)                | -    | -      | NOT MET      |
| Ħ   | Warrant 2: Four-Hour                                        | 0   | 4      | NOT MET      | All-Way Stop: Criteria B (Crash History - 12 Months)       | 1    | 5      | NOT MET      |
| rai | Warrant 3B: Peak Hour                                       | 0   | 1      | NOT MET      | All-Way Stop: Criteria C1 (Minimum Volumes)                | 14   | 8      | MET          |
| Val | Warrant 7B: Crash History - 12 Months                       | 1   | 5      | NOT MET      | All-Way Stop: Criteria C2 (Minor Approach - Maximum Delay) | 15.3 | 30     | NOT MET      |
| >   | Warrant 7C: Condition A or Condition B (80%)                | 2   | 8      | NOT MET      | All-Way Stop: Criteria D (80% of Criteria B, C1, & C2)     | 15   | 8      | NOT MET      |

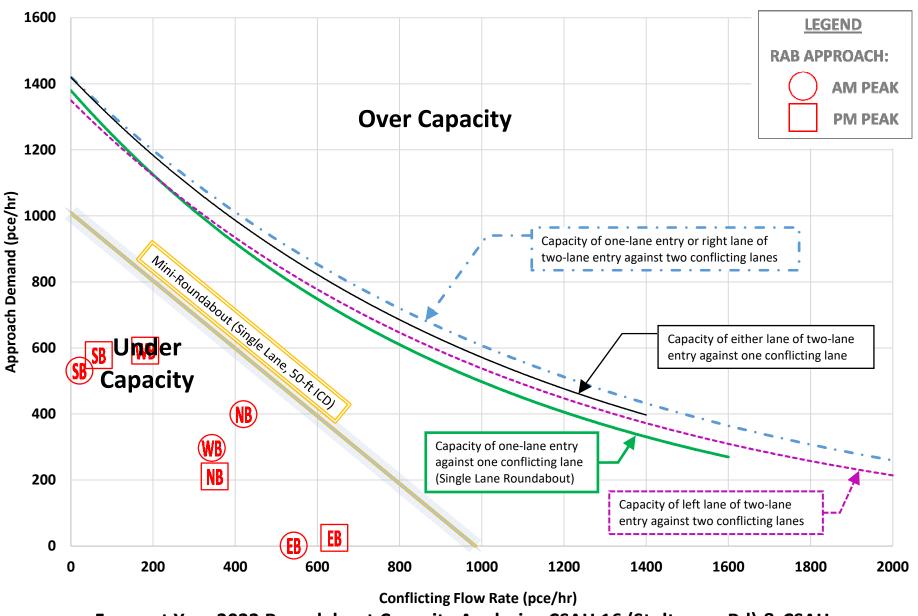
**Source:** U.S. Department of Transportation FHWA Manual on Uniform Traffic Control Devices (2009 Edition)

#### TRAFFIC SIGNAL WARRANTS ANALYSIS

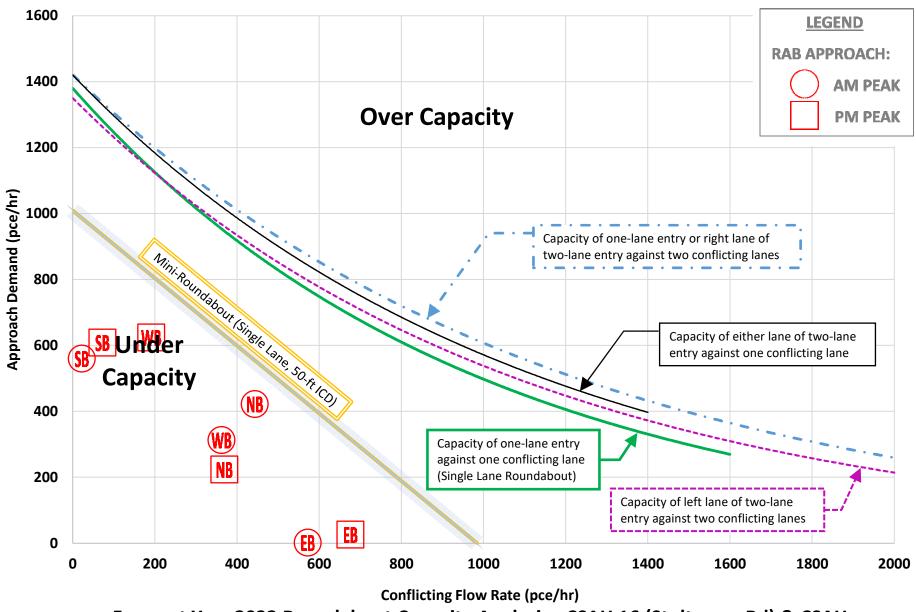
120-0105\_MAPO, CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



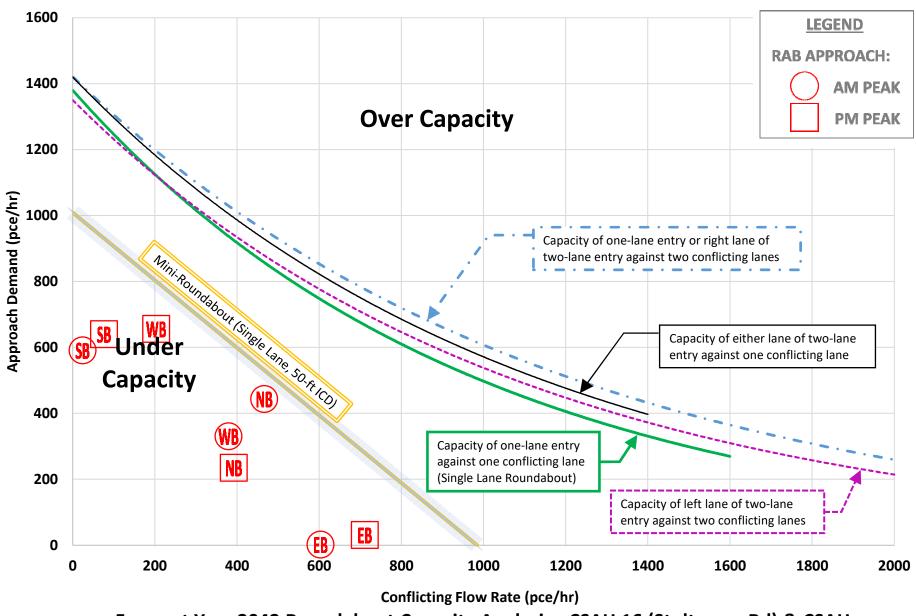



#### Warrant 2 (Four-Hour) Notes:

100%: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.


#### Warrant 3B (Peak Hour) Notes:

100%: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane. 70%: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.


| Intersection Control Evaluation                         |  |
|---------------------------------------------------------|--|
| CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)       |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
| Appendix D: Planning-Level Roundabout Capacity Analysis |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |



Forecast Year 2022 Roundabout Capacity Analysis - CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



Forecast Year 2032 Roundabout Capacity Analysis - CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)



Forecast Year 2042 Roundabout Capacity Analysis - CSAH 16 (Stoltzman Rd) & CSAH 60 (Stadium Rd)

|        |         |          | _   |          |
|--------|---------|----------|-----|----------|
| Intorc | action  | Control  | EVA | liistiar |
| THE    | CLLIUII | COILLION | Lva | Iualivi  |

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

Appendix E: CMF ID 9120



# **CMF / CRF Details**

**CMF ID: 9120** 

Median treatment for ped/bike safety

Description: Install various median treatment: median fencing, sidewalk fencing, median brick planters, pedestrian islands

Prior Condition: No Prior Condition(s)

**Category: Roadside** 

Study: Analyzing the Impact of Median Treatments on Pedestrian/Bicyclist Safety,

**Zhang et al., 2017** 

**Star Quality Rating:** 

| <br> | _ |   |   |      |
|------|---|---|---|------|
|      | M | T | X | Viev |

View score details

| Crash Modification Factor (CMF) |      |  |  |  |  |  |  |
|---------------------------------|------|--|--|--|--|--|--|
| Value:                          | 0.86 |  |  |  |  |  |  |
| Adjusted Standard Error:        |      |  |  |  |  |  |  |
| Unadjusted Standard Error:      | 0.04 |  |  |  |  |  |  |

| Crash Reduction Factor (CRF) |                                                        |  |  |  |  |  |  |
|------------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| Value:                       | 14 (This value indicates a <b>decrease</b> in crashes) |  |  |  |  |  |  |
| Adjusted Standard Error:     |                                                        |  |  |  |  |  |  |

|                            | Applicability                        |  |  |  |  |  |  |  |  |
|----------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Crash Type:                | All                                  |  |  |  |  |  |  |  |  |
| Crash Severity:            | All                                  |  |  |  |  |  |  |  |  |
| Roadway Types:             | Not specified                        |  |  |  |  |  |  |  |  |
| Number of Lanes:           |                                      |  |  |  |  |  |  |  |  |
| Road Division Type:        | Divided by Median                    |  |  |  |  |  |  |  |  |
| Speed Limit:               |                                      |  |  |  |  |  |  |  |  |
| Area Type:                 | Urban                                |  |  |  |  |  |  |  |  |
| Traffic Volume:            |                                      |  |  |  |  |  |  |  |  |
| Time of Day:               | All                                  |  |  |  |  |  |  |  |  |
| If o                       | countermeasure is intersection-based |  |  |  |  |  |  |  |  |
| Intersection Type:         |                                      |  |  |  |  |  |  |  |  |
| Intersection Geometry:     |                                      |  |  |  |  |  |  |  |  |
| Traffic Control:           |                                      |  |  |  |  |  |  |  |  |
| Major Road Traffic Volume: |                                      |  |  |  |  |  |  |  |  |
| Minor Road Traffic Volume: |                                      |  |  |  |  |  |  |  |  |

|                          | Development Details |  |  |  |  |  |  |  |  |
|--------------------------|---------------------|--|--|--|--|--|--|--|--|
| Date Range of Data Used: | 1998 to 2016        |  |  |  |  |  |  |  |  |
| Municipality:            |                     |  |  |  |  |  |  |  |  |
| State:                   | MD                  |  |  |  |  |  |  |  |  |

| Country:                  | USA |
|---------------------------|-----|
| Type of Methodology Used: | 2   |
| Sample Size Used:         |     |

| Other Details                         |                                             |  |
|---------------------------------------|---------------------------------------------|--|
| Included in Highway Safety<br>Manual? | No                                          |  |
| Date Added to Clearinghouse:          | Jan-17-2018                                 |  |
| Comments:                             | For all crashes, not just ped/bike related. |  |

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

| Intersection | Control | Eval | lustion |
|--------------|---------|------|---------|
| Intersection | Control | Eva  | iuation |

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

Appendix F: CMF ID 9024



# **CMF / CRF Details**

**CMF ID: 9024** 

Install rectangular rapid flashing beacon (RRFB)

Description: Install rectangular rapid flashing beacon (RRFB)

**Prior Condition: No RRFB** 

**Category: Pedestrians** 

Study: <u>Development of Crash Modification Factors for Uncontrolled Pedestrian</u>

Crossing Treatments, Zegeer et al., 2017

**Star Quality Rating:** 

|   |   | _^_ |   |   |
|---|---|-----|---|---|
| 7 | 7 | M   | M | M |

[View score details]

| Crash Modification Factor (CMF) |       |  |  |
|---------------------------------|-------|--|--|
| Value:                          | 0.526 |  |  |
| Adjusted Standard Error:        |       |  |  |
| Unadjusted Standard Error:      | 0.377 |  |  |

| Crash Reduction Factor (CRF)                                    |  |  |  |
|-----------------------------------------------------------------|--|--|--|
| Value: 47.4 (This value indicates a <b>decrease</b> in crashes) |  |  |  |
| Adjusted Standard Error:                                        |  |  |  |

| Applicability              |                                                  |  |  |
|----------------------------|--------------------------------------------------|--|--|
| Crash Type:                | Vehicle/pedestrian                               |  |  |
| Crash Severity:            | All                                              |  |  |
| Roadway Types:             | Minor Arterial                                   |  |  |
| Number of Lanes:           | 2 to 8                                           |  |  |
| Road Division Type:        |                                                  |  |  |
| Speed Limit:               |                                                  |  |  |
| Area Type:                 | Urban and suburban                               |  |  |
| Traffic Volume:            | 533 to 49402 Annual Average Daily Traffic (AADT) |  |  |
| Time of Day:               | All                                              |  |  |
| If c                       | countermeasure is intersection-based             |  |  |
| Intersection Type:         |                                                  |  |  |
| Intersection Geometry:     |                                                  |  |  |
| Traffic Control:           |                                                  |  |  |
| Major Road Traffic Volume: |                                                  |  |  |
| Minor Road Traffic Volume: |                                                  |  |  |

| Development Details      |                                    |  |
|--------------------------|------------------------------------|--|
| Date Range of Data Used: | 2004 to 2013                       |  |
| Municipality:            |                                    |  |
| State:                   | AZ, FL, IL, MA, NY, NC, OR, VA, WI |  |

| Country:                  | USA |
|---------------------------|-----|
| Type of Methodology Used: | 7   |
| Sample Size Used:         |     |

| Other Details                         |             |  |
|---------------------------------------|-------------|--|
| Included in Highway Safety<br>Manual? | No          |  |
| Date Added to Clearinghouse:          | Nov-17-2017 |  |
| Comments:                             |             |  |

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

| Intersection Control Evaluation                      |
|------------------------------------------------------|
| CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)    |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
| Appendix G: Excerpt from 2017 MnDOT Roundabout Study |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |

# Single Lane Roundabouts

Single lane roundabouts were the first roundabouts built in Minnesota. They tend to be considered the basic roundabout and likely the default option for most engineers and transportation officials. Only as traffic volumes increase are more complex and multi-lane roundabouts considered.

Based on the before-after analysis shown here, single lane roundabouts are showing a remarkable performance and decrease in the number of fatal, serious, and injury-related crashes. In fact, the total crash reduction at single lane roundabouts comes completely from the reduction in injury crashes, as property damage crashes remain at the same rate.

Table 12: Crash data from Single Lane Roundabouts with before construction and after construction crash data based on Severity

| Description                         | Vehicles<br>Entering | Total<br>Crashes | К      | A      | В      | С      | PDO   |
|-------------------------------------|----------------------|------------------|--------|--------|--------|--------|-------|
| Before Crashes                      | 1,129,275,675        | 499              | 7      | 17     | 61     | 140    | 274   |
| Before Crash Rate                   | NA                   | 0.442            | 0.0062 | 0.015  | 0.054  | 0.124  | 0.243 |
| After Crashes                       | 1,604,841,825        | 518              | 1      | 4      | 35     | 87     | 391   |
| After Crash Rate                    | NA                   | 0.323            | 0.001  | 0.0025 | 0.022  | 0.054  | 0.244 |
| Percent Increase/Decrease (By Rate) | +42.1%               | -27.0%           | -89.9% | -83.4% | -60.9% | -56.3% | +0.4% |

Table 13: Crash data from Single Lane Roundabouts with before construction and after construction crash data based on the crash diagram

| Description              | Rear<br>End | Sideswipe<br>Same Dir | Left Turn | Ran-off-<br>Road Left | Right<br>Angle | Ran-off-<br>Road Rt. | Head On | Sideswipe<br>Opp |
|--------------------------|-------------|-----------------------|-----------|-----------------------|----------------|----------------------|---------|------------------|
| Before Crashes           | 137         | 15                    | 45        | 10                    | 197            | 14                   | 19      | 13               |
| Before Rate              | 0.121       | 0.013                 | 0.040     | 0.009                 | 0.174          | 0.012                | 0.017   | 0.012            |
| After Crashes            | 132         | 42                    | 11        | 31                    | 89             | 69                   | 28      | 5                |
| After Rate               | 0.082       | 0.026                 | 0.007     | 0.019                 | 0.055          | 0.043                | 0.017   | 0.003            |
| Percent<br>Increase/Decr | -32.2%      | +97.0%                | -82.8%    | +118.1%               | -68.2%         | +246.8%              | +3.7%   | -72.9%           |

Table 14: Crash data from Single Lane Roundabouts with before construction and after construction crash data based on the crash diagram/type

| Description                   | Other  | Not<br>Applicable | Unknown | Blank/Right-<br>Turn | Multi-<br>Vehicle | Ped<br>Crash | Bike<br>Crash |
|-------------------------------|--------|-------------------|---------|----------------------|-------------------|--------------|---------------|
| Before Crashes                | 38     | 2                 | 3       | 6                    | 455               | 6            | 1             |
| Before Crash Rate             | 0.034  | 0.002             | 0.003   | 0.005                | 0.403             | 0.005        | 0.001         |
| After Crashes                 | 73     | 18                | 2       | 18                   | 313               | 10           | 3             |
| After Crash Rate              | 0.045  | 0.011             | 0.001   | 0.011                | 0.195             | 0.006        | 0.002         |
| Percent Increase/<br>Decrease | +35.2% | +533.3%           | -53.1%  | +111.1%              | -51.6%            | +17.3%       | +111.1%       |

| Appendix H: | Detailed | Measures o | of Effectiveness | Results |
|-------------|----------|------------|------------------|---------|
| Appendix H: | Detailed | Measures o | of Effectiveness | Results |
| Appendix H: | Detailed | Measures o | of Effectiveness | Results |
| Appendix H: | Detailed | Measures o | of Effectiveness | Results |
| Appendix H: | Detailed | Measures o | of Effectiveness | Results |

Intersection Control Evaluation
CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road)

#### Existing Year 2021 Conditions - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | South | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|-------|---------|--------|--------------|
| intersection               | MOE                       | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL   | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 14.3  | 0.0      | 0.0    | 57.0  | 29.8    | 7.6    | 0.0    | 2.2     | 0.9    | 8.1   | 2.1     | 2.0    | 6.4          |
|                            | Total Delay (hr)          | 0.0   | 0.0      | 0.0    | 0.3   | 0.0     | 0.6    | 0.0    | 0.2     | 0.0    | 1.0   | 0.1     | 0.0    | 2.2          |
|                            | Movement LOS              | В     | Α        | Α      | F     | D       | Α      | Α      | Α       | Α      | Α     | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 0        | 0      | 20    | 2       | 259    | 0      | 315     | 57     | 420   | 106     | 8      | 1188         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 14    | 14       | 14     | 71    | 71      | 111    | 0      | 7       | 7      | 140   | 33      | 33     |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130   | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 14.3     |        |       | 11.3    |        |        | 2.0     |        |       | 6.8     |        |              |
|                            | Approach LOS              |       | В        |        |       | В       |        |        | Α       |        |       | Α       |        |              |

### Existing Year 2021 Conditions - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| Intersection               | WIOE                      | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 14.4  | 12.2     | 3.1    | 18.2  | 16.2    | 11.4   | 2.5    | 1.7     | 0.5    | 4.0    | 1.7     | 1.5    | 6.8          |
|                            | Total Delay (hr)          | 0.1   | 0.0      | 0.0    | 0.3   | 0.0     | 1.6    | 0.0    | 0.1     | 0.0    | 0.3    | 0.1     | 0.0    | 2.5          |
|                            | Movement LOS              | В     | В        | Α      | С     | С       | В      | Α      | Α       | Α      | Α      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 16    | 10       | 1      | 61    | 2       | 508    | 1      | 156     | 48     | 308    | 240     | 4      | 1355         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 47    | 47       | 47     | 72    | 72      | 199    | 3      | 5       | 5      | 65     | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 13.2     |        |       | 12.1    |        |        | 1.4     |        |        | 3.0     |        |              |
|                            | Approach LOS              |       | В        |        |       | В       |        |        | Α       |        |        | Α       |        |              |

### Alternative 0 (No Build), Forecast Year 2022 - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound Ap <sub>l</sub> | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------------------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| Intersection               | WIOE                      | EBL   | EBT                  | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 13.9  | 0.0                  | 0.0    | 57.8  | 26.1    | 7.8    | 0.0    | 2.2     | 0.9    | 8.2    | 2.2     | 1.9    | 6.4          |
|                            | Total Delay (hr)          | 0.0   | 0.0                  | 0.0    | 0.3   | 0.0     | 0.6    | 0.0    | 0.2     | 0.0    | 1.0    | 0.1     | 0.0    | 2.2          |
|                            | Movement LOS              | В     | Α                    | Α      | F     | D       | Α      | Α      | Α       | Α      | Α      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 0                    | 0      | 19    | 2       | 263    | 0      | 318     | 57     | 423    | 106     | 8      | 1197         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 14    | 14                   | 14     | 71    | 71      | 112    | 0      | 7       | 7      | 139    | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0                    | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 13.9                 |        |       | 11.3    |        |        | 2.0     |        |        | 6.9     |        |              |
|                            | Approach LOS              |       | В                    |        |       | В       |        |        | Α       |        |        | Α       |        |              |

# Alternative 0 (No Build), Forecast Year 2022 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| intersection               | MOL                       | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 16.3  | 13.0     | 2.2    | 17.7  | 17.5    | 11.6   | 2.3    | 1.7     | 0.5    | 4.0    | 1.7     | 1.5    | 6.9          |
|                            | Total Delay (hr)          | 0.1   | 0.0      | 0.0    | 0.3   | 0.0     | 1.7    | 0.0    | 0.1     | 0.0    | 0.4    | 0.1     | 0.0    | 2.7          |
|                            | Movement LOS              | С     | В        | Α      | С     | С       | В      | Α      | Α       | Α      | Α      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 15    | 9        | 1      | 62    | 1       | 517    | 1      | 158     | 46     | 311    | 247     | 4      | 1372         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 46    | 46       | 46     | 75    | 75      | 203    | 3      | 6       | 6      | 62     | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 14.5     |        |       | 12.3    |        |        | 1.4     |        |        | 3.0     |        |              |
|                            | Approach LOS              |       | В        |        |       | В       |        |        | Α       |        |        | Α       |        |              |

Alternative 1, 2, & 3, Forecast Year 2022 - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound Ap <sub>l</sub> | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------------------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| intersection               | MOL                       | EBL   | EBT                  | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 13.9  | 0.0                  | 0.0    | 57.8  | 26.1    | 7.8    | 0.0    | 2.2     | 0.9    | 8.2    | 2.2     | 1.9    | 6.4          |
|                            | Total Delay (hr)          | 0.0   | 0.0                  | 0.0    | 0.3   | 0.0     | 0.6    | 0.0    | 0.2     | 0.0    | 1.0    | 0.1     | 0.0    | 2.2          |
|                            | Movement LOS              | В     | Α                    | Α      | F     | D       | Α      | Α      | Α       | Α      | Α      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 0                    | 0      | 19    | 2       | 263    | 0      | 318     | 57     | 423    | 106     | 8      | 1197         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 14    | 14                   | 14     | 71    | 71      | 112    | 0      | 7       | 7      | 139    | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0                    | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 13.9                 |        |       | 11.3    |        |        | 2.0     |        |        | 6.9     |        |              |
|                            | Approach LOS              |       | В                    |        |       | В       |        |        | Α       |        |        | Α       |        |              |

### Alternative 1, 2, & 3, Forecast Year 2022 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound Ap <sub>l</sub> | proach | Westb | ound Ap | proach | Northb | ound Ap | proach | South | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------------------|--------|-------|---------|--------|--------|---------|--------|-------|---------|--------|--------------|
| intersection               | MOL                       | EBL   | EBT                  | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL   | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 16.3  | 13.0                 | 2.2    | 17.7  | 17.5    | 11.6   | 2.3    | 1.7     | 0.5    | 4.0   | 1.7     | 1.5    | 6.9          |
|                            | Total Delay (hr)          | 0.1   | 0.0                  | 0.0    | 0.3   | 0.0     | 1.7    | 0.0    | 0.1     | 0.0    | 0.4   | 0.1     | 0.0    | 2.7          |
|                            | Movement LOS              | С     | В                    | Α      | С     | С       | В      | Α      | Α       | Α      | Α     | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 15    | 9                    | 1      | 62    | 1       | 517    | 1      | 158     | 46     | 311   | 247     | 4      | 1372         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 46    | 46                   | 46     | 75    | 75      | 203    | 3      | 6       | 6      | 62    | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0                    | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130   | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 14.5                 |        |       | 12.3    |        |        | 1.4     |        |       | 3.0     | •      |              |
|                            | Approach LOS              |       | В                    |        |       | В       |        |        | Α       |        |       | Α       |        |              |

### Alternative 0 (No Build), Forecast Year 2032 - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| Intersection               | WIOE                      | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 15.4  | 0.0      | 0.0    | 90.3  | 79.3    | 8.9    | 0.9    | 2.3     | 1.0    | 10.1   | 2.4     | 2.4    | 7.9          |
|                            | Total Delay (hr)          | 0.0   | 0.0      | 0.0    | 0.5   | 0.0     | 0.7    | 0.0    | 0.2     | 0.0    | 1.2    | 0.1     | 0.0    | 2.7          |
|                            | Movement LOS              | С     | Α        | Α      | F     | F       | Α      | Α      | Α       | Α      | В      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 0        | 0      | 20    | 2       | 281    | 1      | 345     | 62     | 439    | 112     | 8      | 1271         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 13    | 13       | 13     | 92    | 92      | 121    | 0      | 10      | 10     | 165    | 87      | 87     |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 15.4     |        |       | 14.7    |        |        | 2.1     |        |        | 8.4     |        |              |
|                            | Approach LOS              |       | С        |        |       | В       |        |        | Α       |        |        | Α       |        |              |

# Alternative 0 (No Build), Forecast Year 2032 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | South | oound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|-------|----------|--------|--------------|
| Intersection               | WIOE                      | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL   | SBT      | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 16.9  | 12.9     | 3.0    | 19.0  | 26.3    | 13.6   | 1.2    | 1.8     | 0.5    | 4.3   | 2.0      | 1.8    | 7.7          |
|                            | Total Delay (hr)          | 0.1   | 0.0      | 0.0    | 0.3   | 0.0     | 2.0    | 0.0    | 0.1     | 0.0    | 0.4   | 0.1      | 0.0    | 3.0          |
|                            | Movement LOS              | С     | В        | Α      | С     | D       | В      | Α      | Α       | Α      | Α     | Α        | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 17    | 10       | 1      | 64    | 1       | 531    | 1      | 166     | 49     | 335   | 268      | 3      | 1446         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 47    | 47       | 47     | 75    | 75      | 240    | 0      | 5       | 5      | 69    | 0        | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130   | 0        | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 15.0     |        |       | 14.2    |        |        | 1.5     |        |       | 3.3      |        |              |
|                            | Approach LOS              |       | В        |        |       | В       |        |        | Α       |        |       | Α        |        |              |

Alternative 1, 2, & 3 Forecast Year 2032 - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound Ap | proach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|---------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| Intersection               | MOE                       | EBL   | EBT     | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 15.4  | 0.0     | 0.0    | 90.3  | 79.3    | 8.9    | 0.9    | 2.3     | 1.0    | 10.1   | 2.4     | 2.4    | 7.9          |
|                            | Total Delay (hr)          | 0.0   | 0.0     | 0.0    | 0.5   | 0.0     | 0.7    | 0.0    | 0.2     | 0.0    | 1.2    | 0.1     | 0.0    | 2.7          |
|                            | Movement LOS              | С     | Α       | Α      | F     | F       | Α      | Α      | Α       | Α      | В      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 0       | 0      | 20    | 2       | 281    | 1      | 345     | 62     | 439    | 112     | 8      | 1271         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 13    | 13      | 13     | 92    | 92      | 121    | 0      | 10      | 10     | 165    | 87      | 87     |              |
|                            | Storage Bay Distance (ft) | 0     | 0       | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 15.4    |        |       | 14.7    |        |        | 2.1     |        |        | 8.4     |        |              |
|                            | Approach LOS              |       | С       |        |       | В       |        |        | Α       |        |        | Α       |        |              |

### Alternative 1, 2, & 3 Forecast Year 2032 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound Ap <sub>l</sub> | proach | Westb | ound Ap | proach | Northb | ound Ap | proach | South | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------------------|--------|-------|---------|--------|--------|---------|--------|-------|---------|--------|--------------|
| intersection               | MOL                       | EBL   | EBT                  | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL   | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 16.9  | 12.9                 | 3.0    | 19.0  | 26.3    | 13.6   | 1.2    | 1.8     | 0.5    | 4.3   | 2.0     | 1.8    | 7.7          |
|                            | Total Delay (hr)          | 0.1   | 0.0                  | 0.0    | 0.3   | 0.0     | 2.0    | 0.0    | 0.1     | 0.0    | 0.4   | 0.1     | 0.0    | 3.0          |
|                            | Movement LOS              | С     | В                    | Α      | С     | D       | В      | Α      | Α       | Α      | Α     | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 17    | 10                   | 1      | 64    | 1       | 531    | 1      | 166     | 49     | 335   | 268     | 3      | 1446         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 47    | 47                   | 47     | 75    | 75      | 240    | 0      | 5       | 5      | 69    | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0                    | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130   | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 15.0                 |        |       | 14.2    |        |        | 1.5     |        |       | 3.3     |        |              |
|                            | Approach LOS              |       | В                    |        |       | В       |        |        | Α       |        |       | Α       |        |              |

#### Alternative 0 (No Build), Forecast Year 2042 - AM Peak Hour

| Intersection               | MOE                       | Eastbo | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach |      |     | proach | Intersection |
|----------------------------|---------------------------|--------|----------|--------|-------|---------|--------|--------|---------|--------|------|-----|--------|--------------|
| Intersection               | WIOE                      | EBL*   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL  | SBT | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 8.0    | 20.9     | 0.0    | 103.7 | 115.9   | 10.9   | 1.3    | 2.4     | 0.9    | 11.3 | 2.5 | 3.0    | 8.7          |
|                            | Total Delay (hr)          | 0.0    | 0.0      | 0.0    | 0.5   | 0.1     | 0.9    | 0.0    | 0.3     | 0.0    | 1.4  | 0.1 | 0.0    | 3.3          |
|                            | Movement LOS              | Α      | С        | Α      | F     | F       | В      | Α      | Α       | Α      | В    | Α   | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1      | 1        | 0      | 18    | 2       | 297    | 1      | 377     | 65     | 445  | 120 | 10     | 1337         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 12     | 12       | 12     | 92    | 92      | 141    | 0      | 8       | 8      | 172  | 124 | 124    |              |
|                            | Storage Bay Distance (ft) | 0      | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130  | 0   | 0      |              |
|                            | Approach Delay (sec/veh)  |        | 14.5     |        |       | 16.8    |        |        | 2.2     | •      |      | 9.3 |        |              |
|                            | Approach LOS              |        | В        |        |       | С       |        |        | Α       |        |      | Α   |        |              |

#### Alternative 0 (No Build), Forecast Year 2042 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| intersection               | MOL                       | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 16.5  | 15.1     | 5.7    | 20.5  | 34.2    | 15.3   | 1.0    | 1.9     | 0.5    | 4.5    | 2.1     | 1.8    | 8.5          |
|                            | Total Delay (hr)          | 0.1   | 0.1      | 0.0    | 0.4   | 0.0     | 2.4    | 0.0    | 0.1     | 0.0    | 0.4    | 0.2     | 0.0    | 3.7          |
|                            | Movement LOS              | С     | С        | Α      | С     | D       | С      | Α      | Α       | Α      | Α      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 17    | 12       | 1      | 70    | 1       | 556    | 1      | 179     | 51     | 349    | 279     | 4      | 1520         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 52    | 52       | 52     | 77    | 77      | 260    | 0      | 4       | 4      | 75     | 0       | 0      |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 15.6     |        |       | 15.9    |        |        | 1.6     |        |        | 3.4     |        |              |
|                            | Approach LOS              |       | С        |        |       | С       |        |        | Α       |        |        | Α       |        |              |

<sup>\*</sup>Due to the random nature of traffic modeling, and the extremely low volume of the EBL movement, the original five model runs for the 2042 AM peak hour reported a movement volume of 0 for the EBL movement. With a movement volume of zero, the delay for that movement was therefore also zero. In an attempt to get a non-zero delay, the model was run 10 total times. Between the original five runs and the second round of ten runs, an aggregate five runs was chosen and averaged to obtain a non-zero EBL movement volume. This results in delay for the EBL movement in the 2042 AM being lower than the 2022 and 2032 AM. Typically the delay would be expected to increase over time with growing volumes. However, the EBL movement volume is so low that it will not significantly impact overall or worst approach LOS, or benefit/cost ratios.

Alternative 1, 2, & 3, Forecast Year 2042 - AM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach | Southb | ound Ap | proach | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|--------|---------|--------|--------------|
| intersection               | MOL                       | EBL*  | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL    | SBT     | SBR    | Total        |
|                            | Movement Delay (sec/veh)  | 8.0   | 20.9     | 0.0    | 103.7 | 115.9   | 10.9   | 1.3    | 2.4     | 0.9    | 11.3   | 2.5     | 3.0    | 8.7          |
|                            | Total Delay (hr)          | 0.0   | 0.0      | 0.0    | 0.5   | 0.1     | 0.9    | 0.0    | 0.3     | 0.0    | 1.4    | 0.1     | 0.0    | 3.3          |
|                            | Movement LOS              | Α     | С        | Α      | F     | F       | В      | Α      | Α       | Α      | В      | Α       | Α      | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 1     | 1        | 0      | 18    | 2       | 297    | 1      | 377     | 65     | 445    | 120     | 10     | 1337         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 12    | 12       | 12     | 92    | 92      | 141    | 0      | 8       | 8      | 172    | 124     | 124    |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130    | 0       | 0      |              |
|                            | Approach Delay (sec/veh)  |       | 14.5     |        |       | 16.8    |        |        | 2.2     |        |        | 9.3     |        |              |
|                            | Approach LOS              |       | В        |        |       | С       |        |        | Α       |        |        | Α       |        |              |

Alternative 1, 2, & 3, Forecast Year 2042 - PM Peak Hour

| Intersection               | MOE                       | Eastb | ound App | oroach | Westb | ound Ap | proach | Northb | ound Ap | proach |     |     |     | Intersection |
|----------------------------|---------------------------|-------|----------|--------|-------|---------|--------|--------|---------|--------|-----|-----|-----|--------------|
| intersection               | MOL                       | EBL   | EBT      | EBR    | WBL   | WBT     | WBR    | NBL    | NBT     | NBR    | SBL | SBT | SBR | Total        |
|                            | Movement Delay (sec/veh)  | 16.5  | 15.1     | 5.7    | 20.5  | 34.2    | 15.3   | 1.0    | 1.9     | 0.5    | 4.5 | 2.1 | 1.8 | 8.5          |
|                            | Total Delay (hr)          | 0.1   | 0.1      | 0.0    | 0.4   | 0.0     | 2.4    | 0.0    | 0.1     | 0.0    | 0.4 | 0.2 | 0.0 | 3.7          |
|                            | Movement LOS              | С     | С        | Α      | С     | D       | С      | Α      | Α       | Α      | Α   | Α   | Α   | Α            |
| CSAH 16 (Stoltzman Road) & | Movement Volume           | 17    | 12       | 1      | 70    | 1       | 556    | 1      | 179     | 51     | 349 | 279 | 4   | 1520         |
| CSAH 60 (Stadium Road)     | Movement 95th Queue (ft)  | 52    | 52       | 52     | 77    | 77      | 260    | 0      | 4       | 4      | 75  | 0   | 0   |              |
|                            | Storage Bay Distance (ft) | 0     | 0        | 0      | 0     | 0       | 0      | 0      | 0       | 0      | 130 | 0   | 0   |              |
|                            | Approach Delay (sec/veh)  |       | 15.6     |        |       | 15.9    |        |        | 1.6     |        |     | 3.4 |     |              |
|                            | Approach LOS              |       | С        |        |       | С       |        |        | Α       |        |     | Α   |     |              |

<sup>\*</sup>Due to the random nature of traffic modeling, and the extremely low volume of the EBL movement, the original five model runs for the 2042 AM peak hour reported a movement volume of 0 for the EBL movement. With a movement volume of zero, the delay for that movement was therefore also zero. In an attempt to get a non-zero delay, the model was run 10 total times. Between the original five runs and the second round of ten runs, an aggregate five runs was chosen and averaged to obtain a non-zero EBL movement volume. This results in delay for the EBL movement in the 2042 AM being lower than the 2022 and 2032 AM. Typically the delay would be expected to increase over time with growing volumes. However, the EBL movement volume is so low that it will not significantly impact overall or worst approach LOS, or benefit/cost ratios.

|                         | <b>Intersection Control Evaluation</b>            |
|-------------------------|---------------------------------------------------|
|                         | CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
| Appendix I: Detailed Be | enefit/Cost Analysis                              |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |
|                         |                                                   |

### CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) - Mankato

| ost Analysis         |             |           |               |                                    |                   |                |            | Pedestrian Crash |     |
|----------------------|-------------|-----------|---------------|------------------------------------|-------------------|----------------|------------|------------------|-----|
|                      | Right Angle | Left Turn | Rear End      | Sideswipe                          | Run Off Road      | Head On        | Right Turn | Other            | To  |
| All Crashes          | 1           | 2         | 0             | 0                                  | 2                 | 0              | 1          | 4                | 10  |
| Fatal                |             |           |               |                                    |                   |                |            |                  |     |
| A Injury             |             |           |               |                                    |                   |                |            |                  |     |
| B Injury             |             | 1         |               |                                    |                   |                |            |                  | 8   |
| C Injury             |             |           |               |                                    | 1                 |                |            | 1                |     |
| PDO                  | 1           | 1         |               |                                    |                   |                | 1          | 2                |     |
| Cross-Street Crashes |             |           |               |                                    |                   |                |            |                  | 0   |
| Fatal                |             |           |               |                                    |                   |                |            |                  |     |
| A Injury             |             |           |               |                                    |                   |                |            |                  |     |
| B Injury             |             |           |               |                                    |                   |                |            |                  | 2   |
| C Injury             |             |           |               |                                    |                   |                |            | 1                |     |
| PDO                  |             |           |               |                                    | 1                 |                |            |                  |     |
|                      |             |           |               | Alternative 0                      |                   |                |            |                  |     |
|                      |             |           |               | No Build                           |                   |                |            |                  |     |
| Total Crashes        | 1.0         | 2.0       | 0.0           | 0.0                                | 2.0               | 0.0            | 1.0        | 4.0              | 10  |
| Fatal                | 0.0         | 0.0       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 0.  |
| A Injury             | 0.0         | 0.0       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 0.  |
| B Injury             | 0.0         | 1.0       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 1.  |
| C Injury             | 0.0         | 0.0       | 0.0           | 0.0                                | 1.0               | 0.0            | 0.0        | 2.0              | 3.  |
| PDO                  | 1.0         | 1.0       | 0.0           | 0.0                                | 1.0               | 0.0            | 1.0        | 2.0              | 6.  |
| . = -                |             |           |               |                                    |                   |                |            | Crash Rate =     | 0.2 |
|                      |             |           |               | Alternative 1<br>with Pedestrian R | ofugoo            |                |            |                  |     |
| CMF = 0.86           |             |           | Tillough/Stop | o willi redesiliali K              | CMF ID 9120 (1)   |                |            |                  |     |
| Total Crashes        | 0.9         | 1.7       | 0.0           | 0.0                                | 1.9               | 0.0            | 0.9        | 3.6              | 8.  |
| Fatal                | 0.0         | 0.0       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 0.  |
| A Injury             | 0.0         | 0.0       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 0.  |
| B Injury             | 0.0         | 0.9       | 0.0           | 0.0                                | 0.0               | 0.0            | 0.0        | 0.0              | 0.  |
| C Injury             | 0.0         | 0.0       | 0.0           | 0.0                                | 0.9               | 0.0            | 0.0        | 1.9              | 2.  |
| PDO                  | 0.9         | 0.9       | 0.0           | 0.0                                | 1.0               | 0.0            | 0.9        | 1.7              | 5.  |
|                      |             |           |               |                                    |                   |                |            | Crash Rate =     | 0.2 |
|                      |             |           |               | Alternative 4                      |                   |                |            |                  |     |
|                      |             |           | Com           | pact Roundabout                    | Z MaDOT DAD Other | (2)            |            |                  |     |
| Total Crashes        | ı           |           | 1             | 20°                                | 7 MnDOT RAB Stud  | y ( <i>∠</i> ) | 1          | I                |     |
| Fatal                | 0.00        |           | 1             |                                    |                   |                |            |                  |     |
|                      | 0.00        |           | -             | +                                  | 1                 |                |            | +                |     |
| A Injury<br>B Injury | 0.07        |           |               |                                    |                   |                |            |                  |     |
|                      |             |           |               |                                    |                   |                |            |                  |     |
| C Injury             | 0.17        |           |               |                                    |                   |                |            |                  |     |
| PDO                  | 0.75        |           | ĺ             |                                    |                   |                | 1          | Crash Rate =     | 0.3 |

#### 2021 Annual Crash Cost

| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|--------------------------------------|-----------------|----------|------------------------|------------|--------------------------|------------------------------------|----------------------|---------------------|
|                                      |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        |                     |
|                                      |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | · ·                 |
| Alternative 0                        | Thru/Stop       | В        | 10.0%                  | 0.25       | 4,018,042                | 0.200                              | \$ 220,000           |                     |
| No Build                             | Till di Otop    | С        | 30.0%                  |            |                          | 0.600                              | \$ 120,000           |                     |
|                                      |                 | PDO      | 60.0%                  |            |                          | 1.200                              | \$ 13,000            |                     |
|                                      |                 | Total    | 100%                   |            |                          | 2.000                              |                      | \$ 131,600.00       |
| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|                                      |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        | \$ -                |
|                                      |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | \$ -                |
| Alternative 1                        | Thru/Stop       | В        | 9.7%                   | 0.22       | 4,018,042                | 0.172                              | \$ 220,000           |                     |
| Through/Stop with Pedestrian Refuges | Tillu/Stop      | С        | 30.6%                  |            |                          | 0.544                              | \$ 120,000           |                     |
|                                      |                 | PDO      | 59.7%                  |            |                          | 1.060                              | \$ 13,000            |                     |
|                                      |                 | Total    | 100%                   |            |                          | 1.776                              |                      | \$ 116,900.00       |
| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes / Year (No.)       | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|                                      |                 | K        | 0.2%                   |            |                          | 0.002                              | \$ 12,800,000        | \$ 31,772.01        |
|                                      |                 | Α        | 0.8%                   |            |                          | 0.010                              | \$ 720,000           |                     |
| Alternative 4                        | Roundabout      | В        | 6.8%                   | 0.32       | 4,018,042                | 0.087                              | \$ 220,000           | . ,                 |
| Compact Roundabout                   | Noundabout      | С        | 16.8%                  |            |                          | 0.216                              | \$ 120,000           |                     |
|                                      |                 | PDO      | 75.5%                  |            |                          | 0.971                              | \$ 13,000            |                     |
|                                      |                 | Total    | 100%                   |            |                          | 1.286                              |                      | \$ 96,564.56        |

Cost/Crash reflects MnDOT's Cost-Effectiveness & Benefit-Cost Analysis for Transportation Projects Appendix A, published July 2020. (http://www.dot.state.mn.us/planning/program/appendix\_a.html)

# 20/12 Annual Crash Cost

| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|--------------------------------------|-----------------|----------|------------------------|------------|--------------------------|------------------------------------|----------------------|---------------------|
|                                      |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        | N/A                 |
|                                      |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | \$ -                |
| Alternative 0                        | Thur./Cton      | В        | 10.0%                  | 0.25       | 4,461,714                | 0.111                              | \$ 220,000           | \$ 24,429.24        |
| No Build                             | Thru/Stop       | С        | 30.0%                  |            |                          | 0.333                              | \$ 120,000           | \$ 39,975.12        |
|                                      |                 | PDO      | 60.0%                  |            |                          | 0.666                              | \$ 13,000            | \$ 8,661.28         |
|                                      |                 | Total    | 100%                   |            |                          | 1.110                              |                      | \$ 73,065.64        |
| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|                                      |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        | N/A                 |
|                                      |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | \$ -                |
| Alternative 1                        | Thru/Stop       | В        | 9.7%                   | 0.22       | 4,461,714                | 0.095                              | \$ 220,000           | \$ 21,009.15        |
| Through/Stop with Pedestrian Refuges | Tillu/Stop      | С        | 30.6%                  |            |                          | 0.302                              | \$ 120,000           | \$ 36,244.11        |
|                                      |                 | PDO      | 59.7%                  |            |                          | 0.589                              | \$ 13,000            | \$ 7,650.79         |
|                                      |                 | Total    | 100%                   |            |                          | 0.986                              |                      | \$ 64,904.05        |
| Scenario                             | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|                                      |                 | K        | 0.2%                   |            |                          | 0.003                              | \$ 12,800,000        | N/A                 |
|                                      |                 | Α        | 0.8%                   |            |                          | 0.011                              | \$ 720,000           | \$ 7,938.06         |
| Alternative 4                        | Roundabout      | В        | 6.8%                   | 0.32       | 4,461,714                | 0.096                              | \$ 220,000           |                     |
| Compact Roundabout                   | Roulidabout     | С        | 16.8%                  |            |                          | 0.240                              | \$ 120,000           | \$ 28,775.47        |
|                                      |                 | PDO      | 75.5%                  |            |                          | 1.078                              | \$ 13,000            |                     |
|                                      |                 | Total    | 100%                   |            |                          | 1.428                              |                      | \$ 71,946.95        |

Cost/Crash reflects MnDOT's Cost-Effectiveness & Benefit-Cost Analysis for Transportation Projects Appendix A, published July 2020. (http://www.dot.state.mn.us/planning/program/appendix\_a.html)

40.0%

24.5%

<sup>(1)</sup> CMF ID 9120: Median treatment for ped/bike safety (2) 2017 MnDOT RAB Study: A Study of the Traffic Safety at Roundabouts in Minnesota

# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) - Mankato

|                      | Dight Angle | Left Turn | Rear End       | Sideswipe         | Run Off Road         | Head On  | Dight Turn | Other        | To |
|----------------------|-------------|-----------|----------------|-------------------|----------------------|----------|------------|--------------|----|
| All O                | Right Angle |           |                |                   |                      |          | Right Turn |              |    |
| All Crashes          | 1           | 2         | 0              | 0                 | 2                    | 0        | 1          | 4            |    |
| Fatal                |             |           |                |                   |                      |          |            |              |    |
| A Injury             |             |           |                |                   |                      |          |            |              |    |
| B Injury             |             | 1         |                |                   |                      |          |            |              |    |
| C Injury             |             |           |                |                   | 1                    |          |            | 1            |    |
| PDO                  | 1           | 1         |                |                   |                      |          | 1          | 2            |    |
| Cross-Street Crashes |             |           |                |                   |                      |          |            |              |    |
| Fatal                |             |           |                |                   |                      |          |            |              |    |
| A Injury             |             |           |                |                   |                      |          |            |              |    |
| B Injury             |             |           |                |                   |                      |          |            |              |    |
| C Injury             |             |           |                |                   |                      |          |            | 1            |    |
| PDO                  |             |           |                |                   | 1                    |          |            |              |    |
|                      |             |           |                | Alternative 0     |                      |          |            | <u> </u>     |    |
|                      |             |           |                | No Build          |                      |          |            |              |    |
|                      |             |           |                |                   |                      |          |            |              |    |
| Total Crashes        | 1.0         | 2.0       | 0.0            | 0.0               | 2.0                  | 0.0      | 1.0        | 4.0          | 1  |
| Fatal                | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| A Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| B Injury             | 0.0         | 1.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | 1  |
| C Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 1.0                  | 0.0      | 0.0        | 2.0          | 3  |
| PDO                  | 1.0         | 1.0       | 0.0            | 0.0               | 1.0                  | 0.0      | 1.0        | 2.0          | 6  |
|                      |             |           |                |                   |                      |          |            | Crash Rate = | 0  |
|                      |             |           | <u> </u>       | Alternative 2     | <u> </u>             |          |            |              |    |
|                      |             |           |                | gh/Stop with RRFB |                      |          |            |              |    |
| CMF = 0.526          |             |           | •              | J ·               | CMF ID 9024 (3)      |          |            |              |    |
| Total Crashes        | 1.0         | 2.0       | 0.0            | 0.0               | 2.0                  | 0.0      | 1.0        | 3.1          | (  |
| Fatal                | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| A Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| B Injury             | 0.0         | 1.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          |    |
| C Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 1.0                  | 0.0      | 0.0        | 1.1          | 2  |
| PDO                  | 1.0         | 1.0       | 0.0            | 0.0               | 1.0                  | 0.0      | 1.0        | 2.0          | -  |
|                      |             | -         |                |                   |                      |          | -          | Crash Rate = | 0  |
|                      |             |           |                | Alternative 3     |                      |          |            |              |    |
|                      |             |           |                | with Ped Refuges, | RRFB                 |          |            |              |    |
| CMF = 0.86, 0.526    |             |           | 11110ug.170top |                   | D 9120 (1), CMF ID 9 | 0034 (3) |            |              |    |
| Total Crashes        | 0.9         | 1.7       | 0.0            | 0.0               | 1.9                  | 0.0      | 0.9        | 3.0          | 8  |
| Fatal                | 0.9         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          |    |
| A Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| B Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 0.0          | (  |
| C Injury             | 0.0         | 0.0       | 0.0            | 0.0               | 0.0                  | 0.0      | 0.0        | 1.3          | 2  |
| C irijury            |             |           |                |                   |                      |          |            |              |    |
| PDO                  | 0.9         | 0.9       | 0.0            | 0.0               | 1.0                  | 0.0      | 0.9        | 1.7          | Ę  |

#### 2021 Annual Crash Cost

| Scenario                            | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes / Year (No.)       | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|-------------------------------------|-----------------|----------|------------------------|------------|--------------------------|------------------------------------|----------------------|---------------------|
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        | · ·                 |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           |                     |
| Alternative 0                       | Thru/Stop       | В        | 10.0%                  | 0.25       | 4,018,042                | 0.200                              | \$ 220,000           |                     |
| No Build                            | Tilla/Otop      | С        | 30.0%                  |            |                          | 0.600                              | \$ 120,000           |                     |
|                                     |                 | PDO      | 60.0%                  |            |                          | 1.200                              | \$ 13,000            |                     |
|                                     |                 | Total    | 100%                   |            |                          | 2.000                              |                      | \$ 131,600.00       |
| Scenario                            | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / Crash<br>(\$) | Cost / Year<br>(\$) |
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        | \$ -                |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | \$ -                |
| Alternative 2                       | Thru/Stop       | В        | 11.0%                  | 0.23       | 4,018,042                | 0.200                              | \$ 220,000           | \$ 44,000.00        |
| Through/Stop with RRFB              | Tillu/Stop      | С        | 22.7%                  |            |                          | 0.410                              | \$ 120,000           |                     |
|                                     |                 | PDO      | 66.3%                  |            |                          | 1.200                              | \$ 13,000            |                     |
|                                     |                 | Total    | 100%                   |            |                          | 1.810                              |                      | \$ 108,848.00       |
|                                     |                 |          | Severity               |            | Total Entering           | Average Crashes                    | Cost / Crash         | Cost / Year         |
| Scenario                            | Traffic Control | Severity | Proportion             | Crash Rate | Volume                   | / Year<br>(No.)                    | (\$)                 | (\$)                |
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,800,000        |                     |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 720,000           | •                   |
| Alternative 3                       | Thru/Stop       | В        | 10.4%                  | 0.21       | 4,018,042                | 0.172                              | \$ 220,000           |                     |
| Through/Stop with Ped Refuges, RRFB | 11114/Otop      | С        | 25.8%                  |            |                          | 0.428                              | \$ 120,000           |                     |
|                                     |                 | PDO      | 63.8%                  |            |                          | 1.060                              | \$ 13,000            |                     |
| 0.1/0.1.5.4.14.0071.0.15%           |                 | Total    | 100%                   |            |                          | 1.660                              |                      | \$ 103,028.00       |

Cost/Crash reflects MnDOT's Cost-Effectiveness & Benefit-Cost Analysis for Transportation Projects Appendix A, published July 2020. (http://www.dot.state.mn.us/planning/program/appendix\_a.html)

# 2042 Annual Crash Cost

| Scenario                            | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / C<br>(\$) | rash   | Cost / Year<br>(\$) |       |
|-------------------------------------|-----------------|----------|------------------------|------------|--------------------------|------------------------------------|------------------|--------|---------------------|-------|
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,8          | 00,000 | N/A                 | 40.0% |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 73            | 20,000 | \$ -                |       |
| Alternative 0                       | Thru/Stop       | В        | 10.0%                  | 0.25       | 4,461,714                | 0.111                              |                  | 20,000 |                     |       |
| No Build                            | Tillu/Stop      | С        | 30.0%                  |            |                          | 0.333                              |                  | 20,000 |                     |       |
|                                     |                 | PDO      | 60.0%                  |            |                          | 0.666                              | \$               | 13,000 | \$ 8,661.28         |       |
|                                     |                 | Total    | 100%                   |            |                          | 1.110                              |                  |        | \$ 73,065.64        |       |
| Scenario                            | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / C<br>(\$) | rash   | Cost / Year<br>(\$) |       |
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,8          | 00,000 | N/A                 | 33.7% |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 73            | 20,000 | \$ -                |       |
| Alternative 2                       | Thru/Stop       | В        | 11.0%                  | 0.23       | 4,461,714                | 0.111                              | \$ 2             | 20,000 | \$ 24,429.24        |       |
| Through/Stop with RRFB              | Thru/Stop       | С        | 22.7%                  |            |                          | 0.228                              | \$ 13            | 20,000 | \$ 27,342.98        |       |
|                                     |                 | PDO      | 66.3%                  |            |                          | 0.666                              | \$               | 13,000 | \$ 8,661.28         |       |
|                                     |                 | Total    | 100%                   |            |                          | 1.005                              |                  |        | \$ 60,433.50        |       |
| Scenario                            | Traffic Control | Severity | Severity<br>Proportion | Crash Rate | Total Entering<br>Volume | Average Crashes<br>/ Year<br>(No.) | Cost / C<br>(\$) | rash   | Cost / Year<br>(\$) |       |
|                                     |                 | K        | 0.0%                   |            |                          | 0.000                              | \$ 12,8          | 00,000 | N/A                 | 36.2% |
|                                     |                 | Α        | 0.0%                   |            |                          | 0.000                              | \$ 73            | 20,000 | \$ -                |       |
| Alternative 3                       | Thru/Stop       | В        | 10.4%                  | 0.21       | 4,461,714                | 0.095                              | \$ 2             | 20,000 | \$ 21,009.15        |       |
| Through/Stop with Ped Refuges, RRFB | mu/Stop         | С        | 25.8%                  |            |                          | 0.238                              |                  | 20,000 |                     |       |
|                                     |                 | PDO      | 63.8%                  |            |                          | 0.589                              | \$               | 13,000 |                     |       |
|                                     |                 | Total    | 100%                   |            |                          | 0.922                              |                  | ,      | \$ 57,202.18        |       |

Cost/Crash reflects MnDOT's Cost-Effectiveness & Benefit-Cost Analysis for Transportation Projects Appendix A, published July 2020. (http://www.dot.state.mn.us/planning/program/appendix\_a.html)

<sup>(1)</sup> CMF ID 9120: Median treatment for ped/bike safety
(3) CMF ID 9024: Install Rectangular rapid flashing beacon (RRFB)

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) - Present Value Crash Benefit - 2042 Forecast

|      | Annual Crash Cost         |                        |                        | Crash Benefit             |                        |                        | Present Value Crash Benefit |                        |                        |
|------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|-----------------------------|------------------------|------------------------|
| Year | No Build<br>(0.5% Growth) | Alt 1<br>(0.5% Growth) | Alt 4<br>(0.5% Growth) | No Build<br>(0.5% Growth) | Alt 1<br>(0.5% Growth) | Alt 4<br>(0.5% Growth) | No Build<br>(0.5% Growth)   | Alt 1<br>(0.5% Growth) | Alt 4<br>(0.5% Growth) |
| 2021 | \$ 131,600                | \$ 131,600             | \$ 131,600             | \$ -                      | \$ -                   | \$ -                   | \$ -                        | \$ -                   | \$ -                   |
| 2022 | \$ 128,813                | \$ 117,485             | \$ 97,047              | \$ -                      | \$ 11,328              | \$ 31,765              | \$ -                        | \$ 11,216              | \$ 31,451              |
| 2023 | \$ 126,025                | \$ 114,855             | \$ 95,792              | \$ -                      | \$ 11,170              | \$ 30,233              | \$ -                        | \$ 10,950              | \$ 29,637              |
| 2024 | \$ 123,238                | \$ 112,226             | \$ 94,537              | \$ -                      | \$ 11,011              | \$ 28,701              | \$ -                        | \$ 10,688              | \$ 27,857              |
| 2025 | \$ 120,451                | \$ 109,597             | \$ 93,282              | \$ -                      | \$ 10,853              | \$ 27,168              | \$ -                        | \$ 10,430              | \$ 26,108              |
| 2026 | \$ 117,663                | \$ 106,968             | \$ 92,027              | \$ -                      | \$ 10,695              | \$ 25,636              | \$ -                        | \$ 10,176              | \$ 24,392              |
| 2027 | \$ 114,876                | \$ 104,339             | \$ 90,772              | \$ -                      | \$ 10,537              | \$ 24,104              | \$ -                        | \$ 9,926               | \$ 22,707              |
| 2028 | \$ 112,089                | \$ 101,710             | \$ 89,517              | \$ -                      | \$ 10,378              | \$ 22,571              | \$ -                        | \$ 9,680               | \$ 21,053              |
| 2029 | \$ 109,301                | \$ 99,081              | \$ 88,262              | \$ -                      | \$ 10,220              | \$ 21,039              | \$ -                        | \$ 9,438               | \$ 19,429              |
| 2030 | \$ 106,514                | \$ 96,452              | \$ 87,007              | \$ -                      | \$ 10,062              | \$ 19,507              | \$ -                        | \$ 9,200               | \$ 17,836              |
| 2031 | \$ 103,726                | \$ 93,823              | \$ 85,752              | \$ -                      | \$ 9,903               | \$ 17,974              | \$ -                        | \$ 8,965               | \$ 16,272              |
| 2032 | \$ 100,939                | \$ 91,194              | \$ 84,497              | \$ -                      | \$ 9,745               | \$ 16,442              | \$ -                        | \$ 8,735               | \$ 14,737              |
| 2033 | \$ 98,152                 | \$ 88,565              | \$ 83,242              | \$ -                      | \$ 9,587               | \$ 14,910              | \$ -                        | \$ 8,508               | \$ 13,232              |
| 2034 | \$ 95,364                 | \$ 85,936              | \$ 81,987              | \$ -                      | \$ 9,428               | \$ 13,377              | \$ -                        | \$ 8,284               | \$ 11,754              |
| 2035 | \$ 92,577                 | \$ 83,307              | \$ 80,732              | \$ -                      | \$ 9,270               | \$ 11,845              | \$ -                        | \$ 8,064               | \$ 10,305              |
| 2036 | \$ 89,790                 | \$ 80,678              | \$ 79,477              | \$ -                      | \$ 9,112               | \$ 10,313              | \$ -                        | \$ 7,848               | \$ 8,883               |
| 2037 | \$ 87,002                 | \$ 78,049              | \$ 78,222              | \$ -                      | \$ 8,953               | \$ 8,780               | \$ -                        | \$ 7,636               | \$ 7,488               |
| 2038 | \$ 84,215                 | \$ 75,420              | \$ 76,967              | \$ -                      | \$ 8,795               | \$ 7,248               | \$ -                        | \$ 7,426               | \$ 6,120               |
| 2039 | \$ 81,428                 | \$ 72,791              | \$ 75,712              | \$ -                      | \$ 8,637               | \$ 5,716               | \$ -                        | \$ 7,220               | \$ 4,778               |
| 2040 | \$ 78,640                 | \$ 70,162              | \$ 74,457              | \$ -                      | \$ 8,478               | \$ 4,183               | \$ -                        | \$ 7,018               | \$ 3,463               |
| 2041 | \$ 75,853                 | \$ 67,533              | \$ 73,202              | \$ -                      | \$ 8,320               | \$ 2,651               | \$ -                        | \$ 6,819               | \$ 2,173               |
| 2042 | \$ 73,066                 | \$ 64,904              | \$ 71,947              | \$ -                      | \$ 8,162               | \$ 1,119               | \$ -                        | \$ 6,623               | \$ 908                 |
|      | \$ 2,119,722              | \$ 1,915,080           | \$ 1,774,440           | \$ -                      | \$ 204,642             | \$ 345,282             | \$ -                        | \$ 184,847             | \$ 320,581             |

Discount Rate 1.0% Current Year 2021

CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) - Present Value Crash Benefit - 2042 Forecast

|      | Annual Crash Cost         |                        |                        | Crash Benefit             |                        |                        | Present Value Crash Benefit |                        |                        |
|------|---------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|-----------------------------|------------------------|------------------------|
| Year | No Build<br>(0.5% Growth) | Alt 2<br>(0.5% Growth) | Alt 3<br>(0.5% Growth) | No Build<br>(1.0% Growth) | Alt 2<br>(0.5% Growth) | Alt 3<br>(0.5% Growth) | No Build<br>(1.0% Growth)   | Alt 2<br>(0.5% Growth) | Alt 3<br>(0.5% Growth) |
| 2021 | \$ 131,600                | \$ 131,600             | \$ 131,600             | \$ -                      | \$ -                   | \$ -                   | \$ -                        | \$ -                   | \$ -                   |
| 2022 | \$ 128,813                | \$ 109,392             | \$ 103,543             | \$ -                      | \$ 19,420              | \$ 25,270              | \$ -                        | \$ 19,228              | \$ 25,019              |
| 2023 | \$ 126,025                | \$ 106,944             | \$ 101,226             | \$ -                      | \$ 19,081              | \$ 24,799              | \$ -                        | \$ 18,705              | \$ 24,311              |
| 2024 | \$ 123,238                | \$ 104,496             | \$ 98,909              | \$ -                      | \$ 18,742              | \$ 24,329              | \$ -                        | \$ 18,190              | \$ 23,613              |
| 2025 | \$ 120,451                | \$ 102,048             | \$ 96,592              | \$ -                      | \$ 19,420              | \$ 25,270              | \$ -                        | \$ 18,663              | \$ 24,284              |
| 2026 | \$ 117,663                | \$ 99,600              | \$ 94,275              | \$ -                      | \$ 18,063              | \$ 23,388              | \$ -                        | \$ 17,186              | \$ 22,253              |
| 2027 | \$ 114,876                | \$ 97,153              | \$ 91,958              | \$ -                      | \$ 17,723              | \$ 22,918              | \$ -                        | \$ 16,696              | \$ 21,590              |
| 2028 | \$ 112,089                | \$ 94,705              | \$ 89,641              | \$ -                      | \$ 17,384              | \$ 22,448              | \$ -                        | \$ 16,214              | \$ 20,937              |
| 2029 | \$ 109,301                | \$ 92,257              | \$ 87,324              | \$ -                      | \$ 17,045              | \$ 21,977              | \$ -                        | \$ 15,740              | \$ 20,296              |
| 2030 | \$ 106,514                | \$ 89,809              | \$ 85,007              | \$ -                      | \$ 16,705              | \$ 21,507              | \$ -                        | \$ 15,274              | \$ 19,665              |
| 2031 | \$ 103,726                | \$ 87,361              | \$ 82,690              | \$ -                      | \$ 16,366              | \$ 21,037              | \$ -                        | \$ 14,816              | \$ 19,044              |
| 2032 | \$ 100,939                | \$ 84,913              | \$ 80,373              | \$ -                      | \$ 16,026              | \$ 20,566              | \$ -                        | \$ 14,365              | \$ 18,434              |
| 2033 | \$ 98,152                 | \$ 82,465              | \$ 78,056              | \$ -                      | \$ 15,687              | \$ 20,096              | \$ -                        | \$ 13,921              | \$ 17,834              |
| 2034 | \$ 95,364                 | \$ 80,017              | \$ 75,739              | \$ -                      | \$ 15,347              | \$ 19,626              | \$ -                        | \$ 13,485              | \$ 17,245              |
| 2035 | \$ 92,577                 | \$ 77,569              | \$ 73,422              | \$ -                      | \$ 15,008              | \$ 19,156              | \$ -                        | \$ 13,056              | \$ 16,665              |
| 2036 | \$ 89,790                 | \$ 75,121              | \$ 71,104              | \$ -                      | \$ 14,669              | \$ 18,685              | \$ -                        | \$ 12,635              | \$ 16,095              |
| 2037 | \$ 87,002                 | \$ 72,673              | \$ 68,787              | \$ -                      | \$ 14,329              | \$ 18,215              | \$ -                        | \$ 12,220              | \$ 15,534              |
| 2038 | \$ 84,215                 | \$ 70,225              | \$ 66,470              | \$ -                      | \$ 13,990              | \$ 17,745              | \$ -                        | \$ 11,813              | \$ 14,983              |
| 2039 | \$ 81,428                 | \$ 67,777              | \$ 64,153              | \$ -                      | \$ 13,650              | \$ 17,274              | \$ -                        | \$ 11,412              | \$ 14,442              |
| 2040 | \$ 78,640                 | \$ 65,329              | \$ 61,836              | \$ -                      | \$ 13,311              | \$ 16,804              | \$ -                        | \$ 11,018              | \$ 13,909              |
| 2041 | \$ 75,853                 | \$ 62,881              | \$ 59,519              | \$ -                      | \$ 12,972              | \$ 16,334              | \$ -                        | \$ 10,631              | \$ 13,386              |
| 2042 | \$ 73,066                 | \$ 60,434              | \$ 57,202              | \$ -                      | \$ 12,632              | \$ 15,863              | \$ -                        | \$ 10,250              | \$ 12,872              |
|      | \$ 2,119,722              | \$ 1,783,170           | \$ 1,687,826           | \$ -                      | \$ 337,570             | \$ 433,307             | \$ -                        | \$ 305,519             | \$ 392,411             |

Discount Rate 1.0% Current Year 2021

### **Daily and Annual Vehicle Hours Traveled**

| 2021 | Delay | (hr) |
|------|-------|------|
|      |       |      |

| Time<br>Period  | Grouping              | Percent of Grouping by Volume | 2021<br>No Build<br>Delay<br>(hr) |  |  |
|-----------------|-----------------------|-------------------------------|-----------------------------------|--|--|
| 12:00 AM        | AM OFF                | 6.8%                          | 0.14                              |  |  |
| 1:00 AM         | AM OFF                | 2.4%                          | 0.05                              |  |  |
| 2:00 AM         | AM OFF                | 4.0%                          | 0.08                              |  |  |
| 3:00 AM         | AM OFF                | 3.6%                          | 0.08                              |  |  |
| 4:00 AM         | AM OFF                | 4.0%                          | 0.08                              |  |  |
| 5:00 AM         | AM OFF                | 14.8%                         | 0.31                              |  |  |
| 6:00 AM         | AM                    | 31.3%                         | 0.66                              |  |  |
| 7:00 AM         | AM                    | 100.0%                        | 2.10                              |  |  |
| 8:00 AM         | AM                    | 80.3%                         | 1.69                              |  |  |
| 9:00 AM         | OFF                   | 52.7%                         | 1.11                              |  |  |
| 10:00 AM        | OFF                   | 44.2%                         | 1.15                              |  |  |
| 11:00 AM        | OFF                   | 58.4%                         | 1.52                              |  |  |
| 12:00 PM        | OFF                   | 64.5%                         | 1.68                              |  |  |
| 1:00 PM         | OFF                   | 62.6%                         | 1.63                              |  |  |
| 2:00 PM         | OFF                   | 66.3%                         | 1.72                              |  |  |
| 3:00 PM         | PM                    | 78.1%                         | 2.03                              |  |  |
| 4:00 PM         | PM                    | 100.0%                        | 2.60                              |  |  |
| 5:00 PM         | PM                    | 92.3%                         | 2.40                              |  |  |
| 6:00 PM         | PM                    | 73.2%                         | 1.90                              |  |  |
| 7:00 PM         | PM OFF                | 56.8%                         | 1.48                              |  |  |
| 8:00 PM         | PM OFF                | 41.5%                         | 1.08                              |  |  |
| 9:00 PM         | PM OFF                | 28.0%                         | 0.73                              |  |  |
| 10:00 PM        | PM OFF                | 18.6%                         | 0.48                              |  |  |
| 11:00 PM        | PM OFF                | 10.8%                         | 0.28                              |  |  |
| 2021 Daily Dela | 2021 Daily Delay (hr) |                               |                                   |  |  |
| 2021 Annual D   | elay (hr)             |                               | 9852.2                            |  |  |

2022 Delay (hr)

| Time<br>Period       | Grouping | Percent of Grouping by Volume | 2022<br>No Build<br>Delay<br>(hr) | 2022<br>ALT 1<br>Delay<br>(hr) | 2022<br>ALT 4<br>Delay<br>(hr) |
|----------------------|----------|-------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| 12:00 AM             | AM OFF   | 6.8%                          | 0.14                              | 0.14                           | 0.13                           |
| 1:00 AM              | AM OFF   | 2.4%                          | 0.05                              | 0.05                           | 0.05                           |
| 2:00 AM              | AM OFF   | 3.9%                          | 0.08                              | 0.08                           | 0.08                           |
| 3:00 AM              | AM OFF   | 3.6%                          | 0.08                              | 0.08                           | 0.07                           |
| 4:00 AM              | AM OFF   | 3.9%                          | 0.08                              | 0.08                           | 0.08                           |
| 5:00 AM              | AM OFF   | 14.6%                         | 0.31                              | 0.31                           | 0.29                           |
| 6:00 AM              | AM       | 31.0%                         | 0.65                              | 0.65                           | 0.61                           |
| 7:00 AM              | AM       | 100.0%                        | 2.10                              | 2.10                           | 1.96                           |
| 8:00 AM              | AM       | 80.3%                         | 1.69                              | 1.69                           | 1.57                           |
| 9:00 AM              | OFF      | 52.4%                         | 1.10                              | 1.10                           | 1.03                           |
| 10:00 AM             | OFF      | 44.0%                         | 1.19                              | 1.19                           | 0.60                           |
| 11:00 AM             | OFF      | 58.4%                         | 1.58                              | 1.58                           | 0.79                           |
| 12:00 PM             | OFF      | 64.5%                         | 1.74                              | 1.74                           | 0.87                           |
| 1:00 PM              | OFF      | 62.6%                         | 1.69                              | 1.69                           | 0.85                           |
| 2:00 PM              | OFF      | 66.3%                         | 1.79                              | 1.79                           | 0.90                           |
| 3:00 PM              | PM       | 78.2%                         | 2.11                              | 2.11                           | 1.06                           |
| 4:00 PM              | PM       | 100.0%                        | 2.70                              | 2.70                           | 1.35                           |
| 5:00 PM              | PM       | 92.2%                         | 2.49                              | 2.49                           | 1.25                           |
| 6:00 PM              | PM       | 73.2%                         | 1.98                              | 1.98                           | 0.99                           |
| 7:00 PM              | PM OFF   | 56.8%                         | 1.53                              | 1.53                           | 0.77                           |
| 8:00 PM              | PM OFF   | 41.4%                         | 1.12                              | 1.12                           | 0.56                           |
| 9:00 PM              | PM OFF   | 27.7%                         | 0.75                              | 0.75                           | 0.38                           |
| 10:00 PM             | PM OFF   | 18.4%                         | 0.50                              | 0.50                           | 0.25                           |
| 11:00 PM             | PM OFF   | 10.7%                         | 0.29                              | 0.29                           | 0.14                           |
| 022 Daily Dela       | ay (hr)  |                               | 27.7                              | 27.7                           | 16.6                           |
| 22 Annual Delay (hr) |          | 10128.3                       | 10128.3                           | 6068.8                         |                                |

2032 Delay (Hr)

| Time<br>Period  | Grouping  | Percent of Grouping by Volume | 2032<br>No Build<br>Delay<br>(hr) | 2032<br>ALT 1<br>Delay<br>(hr) | 2032<br>ALT 4<br>Delay<br>(hr) |
|-----------------|-----------|-------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| 12:00 AM        | AM OFF    | 6.9%                          | 0.19                              | 0.19                           | 0.19                           |
| 1:00 AM         | AM OFF    | 2.5%                          | 0.07                              | 0.07                           | 0.07                           |
| 2:00 AM         | AM OFF    | 4.0%                          | 0.11                              | 0.11                           | 0.11                           |
| 3:00 AM         | AM OFF    | 3.8%                          | 0.11                              | 0.11                           | 0.10                           |
| 4:00 AM         | AM OFF    | 4.0%                          | 0.11                              | 0.11                           | 0.11                           |
| 5:00 AM         | AM OFF    | 14.9%                         | 0.42                              | 0.42                           | 0.40                           |
| 6:00 AM         | AM        | 31.2%                         | 0.87                              | 0.87                           | 0.84                           |
| 7:00 AM         | AM        | 100.0%                        | 2.80                              | 2.80                           | 2.70                           |
| 8:00 AM         | AM        | 80.5%                         | 2.25                              | 2.25                           | 2.17                           |
| 9:00 AM         | OFF       | 52.7%                         | 1.48                              | 1.48                           | 1.42                           |
| 10:00 AM        | OFF       | 44.2%                         | 1.37                              | 1.37                           | 0.69                           |
| 11:00 AM        | OFF       | 58.6%                         | 1.82                              | 1.82                           | 0.91                           |
| 12:00 PM        | OFF       | 64.7%                         | 2.01                              | 2.01                           | 1.00                           |
| 1:00 PM         | OFF       | 62.9%                         | 1.95                              | 1.95                           | 0.98                           |
| 2:00 PM         | OFF       | 66.5%                         | 2.06                              | 2.06                           | 1.03                           |
| 3:00 PM         | PM        | 78.3%                         | 2.43                              | 2.43                           | 1.21                           |
| 4:00 PM         | PM        | 100.0%                        | 3.10                              | 3.10                           | 1.55                           |
| 5:00 PM         | PM        | 92.4%                         | 2.86                              | 2.86                           | 1.43                           |
| 6:00 PM         | PM        | 73.5%                         | 2.28                              | 2.28                           | 1.14                           |
| 7:00 PM         | PM OFF    | 57.1%                         | 1.77                              | 1.77                           | 0.89                           |
| 8:00 PM         | PM OFF    | 41.8%                         | 1.30                              | 1.30                           | 0.65                           |
| 9:00 PM         | PM OFF    | 28.0%                         | 0.87                              | 0.87                           | 0.43                           |
| 10:00 PM        | PM OFF    | 18.7%                         | 0.58                              | 0.58                           | 0.29                           |
| 11:00 PM        | PM OFF    | 10.7%                         | 0.33                              | 0.33                           | 0.17                           |
| 2032 Daily Dela |           |                               | 33.1                              | 33.1                           | 20.5                           |
| 2032 Annual D   | elay (hr) |                               | 12101.9                           | 12101.9                        | 7474.4                         |

2042 Delay (hr)

| Time<br>Period        | Grouping             | Percent of Grouping by Volume | 2042<br>No Build<br>Delay<br>(hr) | 2042<br>ALT 1<br>Delay<br>(hr) | 2042<br>ALT 4<br>Delay<br>(hr) |
|-----------------------|----------------------|-------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| 12:00 AM              | AM OFF               | 7.0%                          | 0.24                              | 0.24                           | 0.32                           |
| 1:00 AM               | AM OFF               | 2.6%                          | 0.09                              | 0.09                           | 0.12                           |
| 2:00 AM               | AM OFF               | 4.4%                          | 0.15                              | 0.15                           | 0.20                           |
| 3:00 AM               | AM OFF               | 3.8%                          | 0.13                              | 0.13                           | 0.17                           |
| 4:00 AM               | AM OFF               | 4.1%                          | 0.14                              | 0.14                           | 0.18                           |
| 5:00 AM               | AM OFF               | 14.9%                         | 0.51                              | 0.51                           | 0.68                           |
| 6:00 AM               | AM                   | 31.3%                         | 1.06                              | 1.06                           | 1.42                           |
| 7:00 AM               | AM                   | 100.0%                        | 3.40                              | 3.40                           | 4.54                           |
| 8:00 AM               | AM                   | 80.5%                         | 2.74                              | 2.74                           | 3.65                           |
| 9:00 AM               | OFF                  | 52.9%                         | 1.80                              | 1.80                           | 2.40                           |
| 10:00 AM              | OFF                  | 44.4%                         | 1.60                              | 1.60                           | 0.80                           |
| 11:00 AM              | OFF                  | 58.5%                         | 2.11                              | 2.11                           | 1.06                           |
| 12:00 PM              | OFF                  | 64.4%                         | 2.32                              | 2.32                           | 1.16                           |
| 1:00 PM               | OFF                  | 62.7%                         | 2.26                              | 2.26                           | 1.13                           |
| 2:00 PM               | OFF                  | 66.2%                         | 2.38                              | 2.38                           | 1.20                           |
| 3:00 PM               | PM                   | 78.2%                         | 2.82                              | 2.82                           | 1.41                           |
| 4:00 PM               | PM                   | 100.0%                        | 3.60                              | 3.60                           | 1.81                           |
| 5:00 PM               | PM                   | 92.3%                         | 3.32                              | 3.32                           | 1.67                           |
| 6:00 PM               | PM                   | 73.4%                         | 2.64                              | 2.64                           | 1.33                           |
| 7:00 PM               | PM OFF               | 57.0%                         | 2.05                              | 2.05                           | 1.03                           |
| 8:00 PM               | PM OFF               | 41.7%                         | 1.50                              | 1.50                           | 0.75                           |
| 9:00 PM               | PM OFF               | 28.0%                         | 1.01                              | 1.01                           | 0.51                           |
| 10:00 PM              | PM OFF               | 18.7%                         | 0.67                              | 0.67                           | 0.34                           |
| 11:00 PM PM OFF 10.9% |                      | 10.9%                         | 0.39                              | 0.39                           | 0.20                           |
| 042 Daily Dela        | 142 Daily Delay (hr) |                               |                                   | 38.9                           | 28.1                           |
| 042 Annual De         | elay (hr)            |                               | 14216.6                           | 14216.6                        | 10249.6                        |

### **Daily and Annual Vehicle Hours Traveled**

2021 Delay (hr)

| Time Period     | Grouping              | Percent of Grouping by<br>Volume | 2021<br>No Build<br>Delay<br>(hr) |  |  |
|-----------------|-----------------------|----------------------------------|-----------------------------------|--|--|
| 12:00 AM        | AM OFF                | 6.8%                             | 0.14                              |  |  |
| 1:00 AM         | AM OFF                | 2.4%                             | 0.05                              |  |  |
| 2:00 AM         | AM OFF                | 4.0%                             | 0.08                              |  |  |
| 3:00 AM         | AM OFF                | 3.6%                             | 0.08                              |  |  |
| 4:00 AM         | AM OFF                | 4.0%                             | 0.08                              |  |  |
| 5:00 AM         | AM OFF                | 14.8%                            | 0.31                              |  |  |
| 6:00 AM         | AM                    | 31.3%                            | 0.66                              |  |  |
| 7:00 AM         | AM                    | 100.0%                           | 2.10                              |  |  |
| 8:00 AM         | AM                    | 80.3%                            | 1.69                              |  |  |
| 9:00 AM         | OFF                   | 52.7%                            | 1.11                              |  |  |
| 10:00 AM        | OFF                   | 44.2%                            | 1.15                              |  |  |
| 11:00 AM        | OFF                   | 58.4%                            | 1.52                              |  |  |
| 12:00 PM        | OFF                   | 64.5%                            | 1.68                              |  |  |
| 1:00 PM         | OFF                   | 62.6%                            | 1.63                              |  |  |
| 2:00 PM         | OFF                   | 66.3%                            | 1.72                              |  |  |
| 3:00 PM         | PM                    | 78.1%                            | 2.03                              |  |  |
| 4:00 PM         | PM                    | 100.0%                           | 2.60                              |  |  |
| 5:00 PM         | PM                    | 92.3%                            | 2.40                              |  |  |
| 6:00 PM         | PM                    | 73.2%                            | 1.90                              |  |  |
| 7:00 PM         | PM OFF                | 56.8%                            | 1.48                              |  |  |
| 8:00 PM         | PM OFF                | 41.5%                            | 1.08                              |  |  |
| 9:00 PM         | PM OFF                | 28.0%                            | 0.73                              |  |  |
| 10:00 PM        | PM OFF                | 18.6%                            | 0.48                              |  |  |
| 11:00 PM        | PM OFF                | 10.8%                            | 0.28                              |  |  |
| 2021 Daily Dela | 2021 Daily Delay (hr) |                                  |                                   |  |  |
| 2021 Annual D   | elay (hr)             |                                  | 9852.2                            |  |  |

| 2022 Delay (hr | )         |                                  |                           |                        |                        |
|----------------|-----------|----------------------------------|---------------------------|------------------------|------------------------|
| Time<br>Period | Grouping  | Percent of Grouping by<br>Volume | 2022<br>No Build<br>Delay | 2022<br>ALT 2<br>Delay | 2022<br>ALT 3<br>Delay |
| 40.00.414      | 111.055   | 5.004                            | (hr)                      | (hr)                   | (hr)                   |
| 12:00 AM       | AM OFF    | 6.8%                             | 0.14                      | 0.14                   | 0.14                   |
| 1:00 AM        | AM OFF    | 2.4%                             | 0.05                      | 0.05                   | 0.05                   |
| 2:00 AM        | AM OFF    | 3.9%                             | 0.08                      | 0.08                   | 0.08                   |
| 3:00 AM        | AM OFF    | 3.6%                             | 0.08                      | 0.08                   | 0.08                   |
| 4:00 AM        | AM OFF    | 3.9%                             | 0.08                      | 0.08                   | 0.08                   |
| 5:00 AM        | AM OFF    | 14.6%                            | 0.31                      | 0.31                   | 0.31                   |
| 6:00 AM        | AM        | 31.0%                            | 0.65                      | 0.65                   | 0.65                   |
| 7:00 AM        | AM        | 100.0%                           | 2.10                      | 2.10                   | 2.10                   |
| 8:00 AM        | AM        | 80.3%                            | 1.69                      | 1.69                   | 1.69                   |
| 9:00 AM        | OFF       | 52.4%                            | 1.10                      | 1.10                   | 1.10                   |
| 10:00 AM       | OFF       | 44.0%                            | 1.19                      | 1.19                   | 1.19                   |
| 11:00 AM       | OFF       | 58.4%                            | 1.58                      | 1.58                   | 1.58                   |
| 12:00 PM       | OFF       | 64.5%                            | 1.74                      | 1.74                   | 1.74                   |
| 1:00 PM        | OFF       | 62.6%                            | 1.69                      | 1.69                   | 1.69                   |
| 2:00 PM        | OFF       | 66.3%                            | 1.79                      | 1.79                   | 1.79                   |
| 3:00 PM        | PM        | 78.2%                            | 2.11                      | 2.11                   | 2.11                   |
| 4:00 PM        | PM        | 100.0%                           | 2.70                      | 2.70                   | 2.70                   |
| 5:00 PM        | PM        | 92.2%                            | 2.49                      | 2.49                   | 2.49                   |
| 6:00 PM        | PM        | 73.2%                            | 1.98                      | 1.98                   | 1.98                   |
| 7:00 PM        | PM OFF    | 56.8%                            | 1.53                      | 1.53                   | 1.53                   |
| 8:00 PM        | PM OFF    | 41.4%                            | 1.12                      | 1.12                   | 1.12                   |
| 9:00 PM        | PM OFF    | 27.7%                            | 0.75                      | 0.75                   | 0.75                   |
| 10:00 PM       | PM OFF    | 18.4%                            | 0.50                      | 0.50                   | 0.50                   |
| 11:00 PM       | PM OFF    | 10.7%                            | 0.29                      | 0.29                   | 0.29                   |
| 2022 Daily Del | ay (hr)   |                                  | 27.7                      | 27.7                   | 27.7                   |
| 2022 Annual D  | elay (hr) | _                                | 10128.3                   | 10128.3                | 10128.3                |

2032 Delay (Hr)

| 2032 Delay (Hr |           |                        |          |         |         |
|----------------|-----------|------------------------|----------|---------|---------|
|                |           |                        | 2032     | 2032    | 2032    |
| Time           | Grouping  | Percent of Grouping by | No Build | ALT 2   | ALT 3   |
| Period         |           | Volume                 | Delay    | Delay   | Delay   |
|                |           |                        | (hr)     | (hr)    | (hr)    |
| 12:00 AM       | AM OFF    | 6.9%                   | 0.19     | 0.19    | 0.19    |
| 1:00 AM        | AM OFF    | 2.5%                   | 0.07     | 0.07    | 0.07    |
| 2:00 AM        | AM OFF    | 4.0%                   | 0.11     | 0.11    | 0.11    |
| 3:00 AM        | AM OFF    | 3.8%                   | 0.11     | 0.11    | 0.11    |
| 4:00 AM        | AM OFF    | 4.0%                   | 0.11     | 0.11    | 0.11    |
| 5:00 AM        | AM OFF    | 14.9%                  | 0.42     | 0.42    | 0.42    |
| 6:00 AM        | AM        | 31.2%                  | 0.87     | 0.87    | 0.87    |
| 7:00 AM        | AM        | 100.0%                 | 2.80     | 2.80    | 2.80    |
| 8:00 AM        | AM        | 80.5%                  | 2.25     | 2.25    | 2.25    |
| 9:00 AM        | OFF       | 52.7%                  | 1.48     | 1.48    | 1.48    |
| 10:00 AM       | OFF       | 44.2%                  | 1.37     | 1.37    | 1.37    |
| 11:00 AM       | OFF       | 58.6%                  | 1.82     | 1.82    | 1.82    |
| 12:00 PM       | OFF       | 64.7%                  | 2.01     | 2.01    | 2.01    |
| 1:00 PM        | OFF       | 62.9%                  | 1.95     | 1.95    | 1.95    |
| 2:00 PM        | OFF       | 66.5%                  | 2.06     | 2.06    | 2.06    |
| 3:00 PM        | PM        | 78.3%                  | 2.43     | 2.43    | 2.43    |
| 4:00 PM        | PM        | 100.0%                 | 3.10     | 3.10    | 3.10    |
| 5:00 PM        | PM        | 92.4%                  | 2.86     | 2.86    | 2.86    |
| 6:00 PM        | PM        | 73.5%                  | 2.28     | 2.28    | 2.28    |
| 7:00 PM        | PM OFF    | 57.1%                  | 1.77     | 1.77    | 1.77    |
| 8:00 PM        | PM OFF    | 41.8%                  | 1.30     | 1.30    | 1.30    |
| 9:00 PM        | PM OFF    | 28.0%                  | 0.87     | 0.87    | 0.87    |
| 10:00 PM       | PM OFF    | 18.7%                  | 0.58     | 0.58    | 0.58    |
| 11:00 PM       | PM OFF    | 10.7%                  | 0.33     | 0.33    | 0.33    |
| 2035 Daily Del | ay (hr)   |                        | 33.1     | 33.1    | 33.1    |
| 2035 Annual D  | elay (hr) |                        | 12101.9  | 12101.9 | 12101.9 |

2042 Delay (hr)

| Time<br>Period  | Grouping  | Percent of Grouping by<br>Volume | 2042<br>No Build<br>Delay<br>(hr) | 2042<br>ALT 2<br>Delay<br>(hr) | 2042<br>ALT 3<br>Delay<br>(hr) |
|-----------------|-----------|----------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| 12:00 AM        | AM OFF    | 7.0%                             | 0.24                              | 0.24                           | 0.24                           |
| 1:00 AM         | AM OFF    | 2.6%                             | 0.09                              | 0.09                           | 0.09                           |
| 2:00 AM         | AM OFF    | 4.4%                             | 0.15                              | 0.15                           | 0.15                           |
| 3:00 AM         | AM OFF    | 3.8%                             | 0.13                              | 0.13                           | 0.13                           |
| 4:00 AM         | AM OFF    | 4.1%                             | 0.14                              | 0.14                           | 0.14                           |
| 5:00 AM         | AM OFF    | 14.9%                            | 0.51                              | 0.51                           | 0.51                           |
| 6:00 AM         | AM        | 31.3%                            | 1.06                              | 1.06                           | 1.06                           |
| 7:00 AM         | AM        | 100.0%                           | 3.40                              | 3.40                           | 3.40                           |
| 8:00 AM         | AM        | 80.5%                            | 2.74                              | 2.74                           | 2.74                           |
| 9:00 AM         | OFF       | 52.9%                            | 1.80                              | 1.80                           | 1.80                           |
| 10:00 AM        | OFF       | 44.4%                            | 1.60                              | 1.60                           | 1.60                           |
| 11:00 AM        | OFF       | 58.5%                            | 2.11                              | 2.11                           | 2.11                           |
| 12:00 PM        | OFF       | 64.4%                            | 2.32                              | 2.32                           | 2.32                           |
| 1:00 PM         | OFF       | 62.7%                            | 2.26                              | 2.26                           | 2.26                           |
| 2:00 PM         | OFF       | 66.2%                            | 2.38                              | 2.38                           | 2.38                           |
| 3:00 PM         | PM        | 78.2%                            | 2.82                              | 2.82                           | 2.82                           |
| 4:00 PM         | PM        | 100.0%                           | 3.60                              | 3.60                           | 3.60                           |
| 5:00 PM         | PM        | 92.3%                            | 3.32                              | 3.32                           | 3.32                           |
| 6:00 PM         | PM        | 73.4%                            | 2.64                              | 2.64                           | 2.64                           |
| 7:00 PM         | PM OFF    | 57.0%                            | 2.05                              | 2.05                           | 2.05                           |
| 8:00 PM         | PM OFF    | 41.7%                            | 1.50                              | 1.50                           | 1.50                           |
| 9:00 PM         | PM OFF    | 28.0%                            | 1.01                              | 1.01                           | 1.01                           |
| 10:00 PM        | PM OFF    | 18.7%                            | 0.67                              | 0.67                           | 0.67                           |
| 11:00 PM        | PM OFF    | 10.9%                            | 0.39                              | 0.39                           | 0.39                           |
| 2042 Daily Dela | ay (hr)   |                                  | 38.9                              | 38.9                           | 38.9                           |
| 2042 Annual D   | elay (hr) |                                  | 14216.6                           | 14216.6                        | 14216.6                        |

# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) --- Benefit / Cost Analysis for ALT 1 - 2042 Forecast

| BASE 2021    | Total |
|--------------|-------|
| DFLAY (Stop) | 9.852 |

| 2042 No Improvement | Total  | 2022 No Improvement | Total  |
|---------------------|--------|---------------------|--------|
|                     |        |                     |        |
| DELAY (Stop)        | 14,217 | DELAY (Stop)        | 10,128 |

| 2042 Improvement | Total  | 2022 Improvement | Total  |  |
|------------------|--------|------------------|--------|--|
|                  |        |                  |        |  |
| DELAY (Alt)      | 14,217 | DELAY (Alt)      | 10,128 |  |

| 2042 Changes: | Total |      |
|---------------|-------|------|
| DELAY         |       | 0.0% |

|                         | COSTITEM  |        |                |                    |      |  |
|-------------------------|-----------|--------|----------------|--------------------|------|--|
|                         |           |        |                | 4                  |      |  |
|                         |           |        | Traffic Signal | Contingency        |      |  |
| Category                | Roadway   | Bridge | Lighting       | Construciton Costs | ROW  |  |
| Capital Value (\$)      | 36,950    | \$0    | \$11,000       | \$ 38,800          | \$0  |  |
| Remaining Life (%)-20yr | 37%       | 73%    | 22%            | 37%                | 87%  |  |
| Remaining Life (%)-5yr  | 0%        | 0%     | 0%             | 0%                 | 0%   |  |
| Remaining Cap. Value    | \$ 13,672 | \$ -   | \$ 2,420       | \$ 14,356          | \$ - |  |

Note: Assume Expected Life of 30 Years. Analysis Period is 20 years (assume 20 year capital value, remaining life values).

| BENEFIT 1: Trave | l Time Savings (V | HT)                |                |         |            |    |             |
|------------------|-------------------|--------------------|----------------|---------|------------|----|-------------|
|                  | Annu              | Annualized Savings |                |         |            |    |             |
|                  | 2042              | 2042               | Improvement w/ | '00 cos | t per hour | 0  | iscounted   |
| YEAR             | No Improvement    | Improvement        | VHT Savings    | \$      | 20.30      | Va | alue (1.0%) |
| 2021             | 9,852             | 9,852              |                |         |            |    |             |
| 2022             | 10,128            | 10,128             | \$ -           | \$      |            | \$ | -           |
| 2023             | 10,333            | 10,333             | \$ -           | \$      |            | \$ | -           |
| 2024             | 10,537            | 10,537             | \$ -           | \$      |            | \$ | -           |
| 2025             | 10,742            | 10,742             | \$ -           | \$      |            | \$ | -           |
| 2026             | 10,946            | 10,946             | \$ -           | \$      |            | \$ | -           |
| 2027             | 11,150            | 11,150             | \$ -           | \$      |            | \$ | -           |
| 2028             | 11,355            | 11,355             | \$ -           | \$      |            | \$ | -           |
| 2029             | 11,559            | 11,559             | \$ -           | \$      |            | \$ | -           |
| 2030             | 11,764            | 11,764             | \$ -           | \$      |            | \$ | -           |
| 2031             | 11,968            | 11,968             | \$ -           | \$      |            | \$ | -           |
| 2032             | 12,172            | 12,172             | \$ -           | \$      |            | \$ | -           |
| 2033             | 12,377            | 12,377             | \$ -           | \$      |            | \$ | -           |
| 2034             | 12,581            | 12,581             | \$ -           | \$      |            | \$ | -           |
| 2035             | 12,786            | 12,786             | \$ -           | \$      | -          | \$ | -           |
| 2036             | 12,990            | 12,990             | \$ -           | \$      | -          | \$ | -           |
| 2037             | 13,195            | 13,195             | \$ -           | \$      |            | \$ | -           |
| 2038             | 13,399            | 13,399             | \$ -           | \$      | -          | \$ | -           |
| 2039             | 13,603            | 13,603             | \$ -           | \$      |            | \$ | -           |
| 2040             | 13,808            | 13,808             | \$ -           | \$      |            | \$ | -           |
| 2041             | 14,012            | 14,012             | \$ -           | \$      |            | \$ | -           |
| 2042             | 14,217            | 14,217             | \$ -           | \$      |            | \$ | -           |
| TOTAL            |                   |                    |                | \$      |            | \$ |             |

Note: Trucks on average account for approximately 5% of network traffic . Passenger vehicle occupancy assumed to be 1.31

MnDOT Office of Investment Management, Benefit Cost Analysis

Trucks (Value of Time) \$ 33.00

| mileo i emeconi management, Benefit Geet i maryare |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|
| Standard Values, Appendix A. Fiscal Year 2015      |  |  |  |  |  |

| COST 3: Traffic S | ignal / Maintenan          | ce & Operation             | COST 4: Conf | ingency Constru            | ction Costs                | COST 5: Right | of Way (ROW)               |                            |
|-------------------|----------------------------|----------------------------|--------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|
| YEAR              | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR         | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR          | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |
| 2021              |                            | , ,                        | 2021         | ·                          | ` '                        |               |                            | , ,                        |
| 2022              | \$ 11,000                  | 11,000                     | 2022         | \$ (38,800)                | (38,800)                   |               |                            |                            |
| 2023              | \$ -                       | -                          | 2023         |                            | -                          |               |                            | -                          |
| 2024              | \$ -                       | -                          | 2024         | \$ -                       |                            |               |                            | -                          |
| 2025              | \$ -                       | -                          | 2025         | \$ -                       |                            |               |                            | -                          |
| 2026              | \$ -                       | -                          | 2026         | \$ -                       |                            |               |                            | -                          |
| 2027              | \$ -                       |                            | 2027         | \$ -                       |                            |               |                            | -                          |
| 2028              | \$ -                       | -                          | 2028         | \$ -                       |                            |               |                            | -                          |
| 2029              | \$ -                       | -                          | 2029         | \$ -                       |                            |               |                            | -                          |
| 2030              | \$ -                       |                            | 2030         | \$ -                       |                            |               |                            | -                          |
| 2031              | \$ -                       | -                          | 2031         |                            |                            |               |                            | -                          |
| 2032              | \$ -                       | -                          | 2032         |                            |                            |               |                            | -                          |
| 2033              | \$ -                       | -                          | 2033         | \$ -                       |                            |               |                            | -                          |
| 2034              | \$ -                       | -                          | 2034         |                            |                            |               |                            | -                          |
| 2035              |                            | -                          | 2035         |                            |                            |               |                            | -                          |
| 2036              | \$ -                       | -                          | 2036         | \$ -                       |                            |               |                            |                            |
| 2037              | \$ -                       | -                          | 2037         | \$ -                       |                            |               |                            | -                          |
| 2038              |                            | -                          | 2038         |                            |                            |               |                            |                            |
| 2039              |                            | -                          | 2039         |                            |                            |               |                            | -                          |
| 2040              | \$ -                       | -                          | 2040         |                            |                            |               |                            | -                          |
| 2041              | \$ -                       | -                          | 2041         |                            |                            |               |                            | -                          |
| 2042              |                            | -                          | 2042         |                            |                            |               |                            |                            |
| TOTAL             | \$ 11,000                  | \$ 11,000                  | TOTAL        | \$ (38,800)                | \$ (38,800)                | TOTAL         | \$ -                       | \$ -                       |

| B/C Analysis Summary          |                |     |  |  |  |
|-------------------------------|----------------|-----|--|--|--|
| BENEFITS                      | Value(Discount | ed) |  |  |  |
| Travel Time Savings:     \$ - |                |     |  |  |  |
|                               |                |     |  |  |  |
| TOTAL                         | \$             | -   |  |  |  |

| COSTS                      | Value(Dis | scounted) |
|----------------------------|-----------|-----------|
| Roadway/Interchange        | \$        | (36,950)  |
| 2. Bridges                 | \$        | -         |
| 3. Traffic Signal/Lighting | \$        | 11,000    |
| 4. Contingency Costs       | \$        | (38,800)  |
| 5. Right-of-way (ROW)      | \$        | -         |
| Remaining Capital          | \$        | 24,953    |
| TOTAL                      | \$        | (39,797)  |

| Benefit/Cost Analysis Results |    |         |  |  |  |  |
|-------------------------------|----|---------|--|--|--|--|
| 20-Yr Operation Benefit       | \$ | -       |  |  |  |  |
| 20-Yr Safety Benefit          | \$ | 184,847 |  |  |  |  |
| COSTS                         | \$ | 39,797  |  |  |  |  |
| B/C Ratio*:                   |    | 4.645   |  |  |  |  |

| Cost                              | Estimated | Estimated |
|-----------------------------------|-----------|-----------|
| Category Improvement Description  | NA        | NA        |
| 1 Roadway Paving                  | \$0       | \$34,050  |
| 1 Drainage and Erosion            | \$0       | \$2,900   |
| 1 Misc                            | \$0       | \$0       |
| 2 Bridge                          | \$0       | \$0       |
| 2                                 |           |           |
| 3 Traffic Signal/Lighting         | \$0       | \$11,000  |
| 4                                 |           |           |
| 4                                 |           |           |
|                                   |           |           |
| Total Estimated Construction Cost | \$0       | \$47,950  |
|                                   |           |           |
| 4 Indirect Costs & Contingency    | \$0       | \$24,200  |
| 5 Right-of-Way/Easement Costs     | \$0       | \$0       |
| 4 Professional Services           | \$0       | \$14,600  |
|                                   |           |           |
| Total Project Costs               | \$0       | \$86.750  |

| COST 1: Roadways/Interchange Construction |                            |                            |  |  |  |
|-------------------------------------------|----------------------------|----------------------------|--|--|--|
| YEAR                                      | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |  |  |  |
| 202                                       |                            | ,                          |  |  |  |
| 202                                       | 2 \$ (36,950)              | (36,950)                   |  |  |  |
| 202                                       | 3 \$ -                     | -                          |  |  |  |
| 202                                       | 4 \$ -                     | -                          |  |  |  |
| 202                                       | 5 \$ -                     | -                          |  |  |  |
| 202                                       | 6 \$ -                     | -                          |  |  |  |
| 202                                       | 7 \$ -                     | -                          |  |  |  |
|                                           | 8 \$ -                     | -                          |  |  |  |
|                                           | 9 \$ -                     | -                          |  |  |  |
|                                           | 0 \$ -                     | -                          |  |  |  |
|                                           | 1 \$ -                     | -                          |  |  |  |
|                                           | 2 \$ -                     | -                          |  |  |  |
|                                           | 3 \$ -                     | -                          |  |  |  |
|                                           | 4 \$ -                     | -                          |  |  |  |
|                                           | 5 \$ -                     | -                          |  |  |  |
|                                           | 6 \$ -                     | -                          |  |  |  |
|                                           | 7 \$ -                     |                            |  |  |  |
|                                           | 8 \$ -                     | -                          |  |  |  |
|                                           | 9 \$ -                     | -                          |  |  |  |
|                                           | 0 \$ -                     | -                          |  |  |  |
| 204                                       |                            | -                          |  |  |  |
| 204                                       |                            | - (00.050)                 |  |  |  |
| TOTAL                                     | \$ (36,950)                | \$ (36,950)                |  |  |  |

| COST 2: Bridge |                  |              |
|----------------|------------------|--------------|
|                |                  |              |
|                | CHANGE           | Discounted   |
| YEAR           | with Improvement | Value (1.0%) |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
| TOTAL          | \$ -             | \$ -         |
| _              |                  |              |

| Remaining Ca | apitai Vai | ue |                            |                            |
|--------------|------------|----|----------------------------|----------------------------|
| YEAR         |            |    | Remaining<br>Capital Value | Discounted<br>Value (1.0%) |
|              | 2021       |    |                            |                            |
|              | 2022       | \$ | -                          | -                          |
|              | 2023       | \$ |                            | -                          |
|              | 2024       | \$ |                            | -                          |
|              | 2025       | \$ |                            | -                          |
|              | 2026       | \$ |                            | -                          |
|              | 2027       | \$ |                            | -                          |
|              | 2028       | \$ |                            | -                          |
|              | 2029       | \$ |                            | -                          |
|              | 2030       | \$ |                            | -                          |
|              | 2031       | \$ |                            | -                          |
|              | 2032       | \$ |                            | -                          |
|              | 2033       | \$ |                            | -                          |
|              | 2034       | \$ |                            | -                          |
|              | 2035       | \$ |                            |                            |
|              | 2036       | \$ |                            | -                          |
|              | 2037       | \$ |                            | -                          |
|              | 2038       | \$ | -                          | -                          |
|              | 2039       | \$ | -                          | -                          |
|              | 2040       | \$ | -                          | -                          |
|              | 2041       | \$ |                            | -                          |
|              | 2042       | \$ | 30,448                     | 24,953                     |
| TOTAL        |            | \$ | 30,448                     | \$ 24,953                  |

# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) --- Benefit / Cost Analysis for ALT 2 - 2042 Forecast

| BASE 2021    | Total |
|--------------|-------|
| DFLAY (Stop) | 9.852 |

| 2042 No Improvement | Total  | 2022 No Improvement | Total  |
|---------------------|--------|---------------------|--------|
|                     |        |                     |        |
| DELAY (Stop)        | 14,217 | DELAY (Stop)        | 10,128 |

| 2042 Improvement | Total  | 2022 Improvement | Total  |
|------------------|--------|------------------|--------|
|                  |        |                  |        |
| DELAY (Alt)      | 14,217 | DELAY (Alt)      | 10,128 |

| 2042 Changes: | Total |      |
|---------------|-------|------|
| DELAY         | -     | 0.0% |

|                         | COST ITEM |        |                |                    |      |  |  |  |
|-------------------------|-----------|--------|----------------|--------------------|------|--|--|--|
|                         | 1         |        |                | 4                  |      |  |  |  |
|                         |           |        | Traffic Signal | Contingency        |      |  |  |  |
| Category                | Roadway   | Bridge | Lighting       | Construciton Costs | ROW  |  |  |  |
| Capital Value (\$)      | -         | \$0    | \$20,500       | \$ -               | \$0  |  |  |  |
| Remaining Life (%)-20yr | 37%       | 73%    | 22%            | 37%                | 87%  |  |  |  |
| Remaining Life (%)-5yr  | 0%        | 0%     | 0%             | 0%                 | 0%   |  |  |  |
| Remaining Cap. Value    | \$ -      | \$ -   | \$ 4,510       | \$ -               | \$ - |  |  |  |

Note: Assume Expected Life of 30 Years. Analysis Period is 20 years (assume 20 year capital value, remaining life values).

| BENEFIT 1: Travel | Annual VHT     |             | Annualized Savings |         |            |              |
|-------------------|----------------|-------------|--------------------|---------|------------|--------------|
|                   | 2042           | 2042        | Improvement w/     | '00 cos | t per hour | Discounted   |
| YEAR              | No Improvement | Improvement | VHT Savings        | \$      | 20.30      | Value (1.0%) |
| 2021              | 9,852          | 9,852       |                    |         |            |              |
| 2022              | 10,128         | 10,128      | \$                 | \$      | -          | \$ .         |
| 2023              | 10,333         | 10,333      | \$                 | \$      | -          | \$ .         |
| 2024              | 10,537         | 10,537      | \$                 | \$      | -          | \$ .         |
| 2025              | 10,742         | 10,742      | \$                 | \$      | -          | \$ .         |
| 2026              | 10,946         | 10,946      | \$ -               | \$      | -          | \$ .         |
| 2027              | 11,150         | 11,150      | \$ -               | \$      | -          | \$ .         |
| 2028              | 11,355         | 11,355      | \$ -               | \$      | -          | \$ .         |
| 2029              | 11,559         | 11,559      | \$                 | \$      | -          | \$ .         |
| 2030              | 11,764         | 11,764      | \$                 | \$      | -          | \$ .         |
| 2031              | 11,968         | 11,968      | \$                 | \$      | -          | \$ .         |
| 2032              | 12,172         | 12,172      | \$                 | \$      | -          | \$ .         |
| 2033              | 12,377         | 12,377      | \$                 | \$      | -          | \$ .         |
| 2034              | 12,581         | 12,581      | \$                 | \$      | -          | \$ .         |
| 2035              | 12,786         | 12,786      | \$ -               | \$      | -          | \$ .         |
| 2036              | 12,990         | 12,990      | \$ -               | \$      | -          | \$ .         |
| 2037              | 13,195         | 13,195      | \$ -               | \$      | -          | \$ .         |
| 2038              | 13,399         | 13,399      | \$ -               | \$      | -          | \$           |
| 2039              | 13,603         | 13,603      | \$                 | \$      | -          | \$ .         |
| 2040              | 13,808         | 13,808      | \$ -               | \$      | -          | \$ .         |
| 2041              | 14,012         | 14,012      | \$ -               | \$      | -          | \$ .         |
| 2042              | 14,217         | 14,217      | \$ -               | \$      | -          | \$           |
| TOTAL             |                |             |                    | s       |            | \$           |

Note: Trucks on average account for approximately 5% of network traffic . Passenger vehicle occupancy assumed to be 1.31

MnDOT Office of Investment Management, Benefit Cost Analysis

Trucks (Value of Time) 

\$ 33.00
Standard Values, Appendix A, Fiscal Year 2015

| COST 3. Trailic 3 | ignai / Maintenan          | ce & Operation             | CO31 4. COIII | ingency constru            | CHOIT COSIS                | COST 5. Right | oi way (NOW)               |                            |
|-------------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|
| YEAR              | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR          | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR          | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |
| 2021              |                            |                            | 2021          |                            |                            |               |                            |                            |
| 2022              | \$ (20,500)                | (20,500)                   | 2022          | \$ -                       |                            |               |                            |                            |
| 2023              | \$ (2,500)                 | (2,500)                    |               |                            |                            |               |                            |                            |
| 2024              |                            | (2,475)                    |               |                            |                            |               |                            |                            |
| 2025              |                            | (2,451)                    | 2025          |                            |                            |               |                            |                            |
| 2026              |                            |                            |               |                            |                            |               |                            | -                          |
| 2027              |                            | (2,402)                    |               |                            |                            |               |                            |                            |
| 2028              |                            |                            |               |                            |                            |               |                            |                            |
| 2029              |                            |                            |               |                            |                            |               |                            |                            |
| 2030              |                            |                            |               |                            |                            |               |                            |                            |
| 2031              |                            | (2,309)                    |               |                            |                            |               |                            |                            |
| 2032              |                            |                            |               |                            |                            |               |                            |                            |
| 2033              |                            |                            |               |                            | -                          |               |                            | -                          |
| 2034              |                            |                            | 2034          |                            | -                          |               |                            |                            |
| 2035              |                            |                            |               |                            |                            |               |                            |                            |
| 2036              |                            |                            |               |                            | -                          |               |                            | -                          |
| 2037              |                            |                            |               |                            | -                          |               |                            |                            |
| 2038              |                            | (2,153)                    |               |                            | -                          |               |                            | -                          |
| 2039              |                            | (2,132)                    |               |                            | -                          |               |                            | -                          |
| 2040              |                            |                            |               |                            | -                          |               |                            | -                          |
| 2041              | \$ (2,500)                 | (2,090)                    | 2041          | \$ -                       | -                          |               |                            | -                          |

| BENEFITS             | Value(Disco | unted) |
|----------------------|-------------|--------|
| Travel Time Savings: | \$          | -      |

| COSTS                      | Value(Dis | counted) |
|----------------------------|-----------|----------|
| Roadway/Interchange        | \$        | -        |
| 2. Bridges                 | \$        | -        |
| 3. Traffic Signal/Lighting | \$        | (66,065) |
| 4. Contingency Costs       | \$        | -        |
| 5. Right-of-way (ROW)      | \$        | -        |
| Remaining Capital          | \$        | 3,696    |
| TOTAL                      | \$        | (62,369) |

| Benefit/Cost Analysis Results |    |         |  |  |  |  |
|-------------------------------|----|---------|--|--|--|--|
| 20-Yr Operation Benefit       | \$ | -       |  |  |  |  |
| 20-Yr Safety Benefit          | \$ | 305,519 |  |  |  |  |
| COSTS                         | \$ | 62,369  |  |  |  |  |
| B/C Ratio*:                   |    | 4.899   |  |  |  |  |

| Cost                                     | Estimated | Estimated | Estimated |
|------------------------------------------|-----------|-----------|-----------|
| Category Improvement Description         | NA        | NA        | NA        |
| Roadway Paving                           | \$0       | \$0       | \$0       |
| Drainage and Erosion                     | \$0       | \$0       | \$0       |
| 1 Misc                                   | \$0       | \$0       | \$0       |
| 2 Bridge                                 | \$0       | \$0       | \$0       |
| 2<br>3 Traffic Signal/Lighting<br>4<br>4 | \$0       | \$20,500  | \$0       |
| Total Estimated Construction Cost        | \$0       | \$20,500  | \$0       |
| 4 Indirect Costs & Contingency           | \$0       | \$10,200  | \$0       |
| 5 Right-of-Way/Easement Costs            | \$0       | \$0       | \$0       |
| 4 Professional Services                  | \$0       | \$6,200   | \$0       |
| Total Project Costs                      | \$0       | \$36,900  | \$0       |

| COST 1: Roadways/Interchange Construction |                            |                            |  |  |  |  |
|-------------------------------------------|----------------------------|----------------------------|--|--|--|--|
| YEAR                                      | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |  |  |  |  |
| 2021                                      |                            |                            |  |  |  |  |
| 2022                                      | \$ -                       | -                          |  |  |  |  |
| 2023                                      | \$ -                       |                            |  |  |  |  |
| 2024                                      | \$ -                       |                            |  |  |  |  |
| 2025                                      | \$ -                       |                            |  |  |  |  |
| 2026                                      | \$ -                       |                            |  |  |  |  |
| 2027                                      | \$ -                       | -                          |  |  |  |  |
| 2028                                      | \$ -                       |                            |  |  |  |  |
| 2029                                      | \$ -                       |                            |  |  |  |  |
| 2030                                      | \$ -                       |                            |  |  |  |  |
| 2031                                      | \$ -                       |                            |  |  |  |  |
| 2032                                      | \$ -                       |                            |  |  |  |  |
| 2033                                      | \$ -                       |                            |  |  |  |  |
| 2034                                      | \$ -                       |                            |  |  |  |  |
| 2035                                      | \$ -                       |                            |  |  |  |  |
| 2036                                      | \$ -                       |                            |  |  |  |  |
| 2037                                      | \$ -                       |                            |  |  |  |  |
| 2038                                      | \$ -                       | -                          |  |  |  |  |
| 2039                                      | \$ -                       | -                          |  |  |  |  |
| 2040                                      | \$ -                       | -                          |  |  |  |  |
| 2041                                      |                            | -                          |  |  |  |  |
| 2042                                      | \$ -                       | -                          |  |  |  |  |
| TOTAL                                     | \$ -                       | \$ -                       |  |  |  |  |

| COST 2: Bridge |                            |                            |
|----------------|----------------------------|----------------------------|
| YEAR           | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |
|                |                            | ( - /                      |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
|                |                            |                            |
| TOTAL          | \$ -                       | \$ -                       |

| Remaining Capital Val | ue                         |                            |
|-----------------------|----------------------------|----------------------------|
| YEAR                  | Remaining<br>Capital Value | Discounted<br>Value (1.0%) |
| 2021                  |                            |                            |
| 2022                  | \$ -                       | -                          |
| 2023                  | \$ -                       | -                          |
| 2024                  | \$ -                       | -                          |
| 2025                  | \$ -                       | -                          |
| 2026                  | \$ -                       | -                          |
| 2027                  | \$ -                       | -                          |
| 2028                  | \$ -                       | -                          |
| 2029                  | \$ -                       | -                          |
| 2030                  | \$ -                       | -                          |
| 2031                  | \$ -                       | -                          |
| 2032                  | \$ -                       |                            |
| 2033                  | \$ -                       | -                          |
| 2034                  | \$ -                       | -                          |
| 2035                  | \$ -                       | -                          |
| 2036                  | \$ -                       | -                          |
| 2037                  | \$ -                       | -                          |
| 2038                  | \$ -                       | -                          |
| 2039                  | \$ -                       | -                          |
| 2040                  | \$ -                       | -                          |
| 2041                  | \$ -                       | -                          |
| 2042                  | \$ 4,510                   | 3,696                      |
| TOTAL                 | \$ 4,510                   | \$ 3,696                   |

# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) --- Benefit / Cost Analysis for ALT 3 - 2042 Forecast

| BASE 2021    | Total |
|--------------|-------|
| DFLAY (Stop) | 9.852 |

| 2042 No Improvement | Total  | 2022 No Improvement | Total  |
|---------------------|--------|---------------------|--------|
|                     |        |                     |        |
| DELAY (Stop)        | 14,217 | DELAY (Stop)        | 10,128 |

| 2042 Improvement | Total  | 2022 Improvement | Total  |
|------------------|--------|------------------|--------|
|                  |        |                  |        |
| DELAY (Alt)      | 14,217 | DELAY (Alt)      | 10,128 |

| 2042 Changes: | Total |      |
|---------------|-------|------|
| DELAY         |       | 0.0% |

|                         |           | COST ITEM |                |                    |      |  |  |  |  |
|-------------------------|-----------|-----------|----------------|--------------------|------|--|--|--|--|
|                         | 1         | 2 3 4     |                | 4                  |      |  |  |  |  |
|                         |           |           | Traffic Signal | Contingency        |      |  |  |  |  |
| Category                | Roadway   | Bridge    | Lighting       | Construciton Costs | ROW  |  |  |  |  |
| Capital Value (\$)      | 36,950    | \$0       | \$26,000       | \$ 50,500          | \$0  |  |  |  |  |
| Remaining Life (%)-20yr | 37%       | 73%       | 22%            | 37%                | 87%  |  |  |  |  |
| Remaining Life (%)-5yr  | 0%        | 0%        | 0%             | 0%                 | 0%   |  |  |  |  |
| Remaining Cap. Value    | \$ 13,672 | \$ -      | \$ 5,720       | \$ 18,685          | \$ - |  |  |  |  |

Note: Assume Expected Life of 30 Years. Analysis Period is 20 years (assume 20 year capital value, remaining life values).

|      | Annua          | I VHT       | Annuali        | Annualized Savings |             |    |              |  |
|------|----------------|-------------|----------------|--------------------|-------------|----|--------------|--|
|      | 2042           | 2042        | Improvement w/ | '00 cos            | st per hour |    | Discounted   |  |
| 'EAR | No Improvement | Improvement | VHT Savings    | \$                 | 20.30       |    | Value (1.0%) |  |
| 2021 | 9,852          | 9,852       | \$             | \$                 |             | \$ | -            |  |
| 2022 | 10,128         | 10,128      | \$             | \$                 |             | \$ | -            |  |
| 2023 | 10,333         | 10,333      | \$             | \$                 |             | \$ | -            |  |
| 2024 | 10,537         | 10,537      | \$             | \$                 |             | \$ | -            |  |
| 2025 | 10,742         | 10,742      | \$             | \$                 |             | \$ | -            |  |
| 2026 | 10,946         | 10,946      | \$ -           | \$                 |             | \$ | -            |  |
| 2027 | 11,150         | 11,150      | \$             | \$                 |             | \$ | -            |  |
| 2028 | 11,355         | 11,355      | \$ -           | \$                 | -           | \$ | -            |  |
| 2029 | 11,559         | 11,559      | \$             | \$                 |             | \$ | -            |  |
| 2030 | 11,764         | 11,764      | \$             | \$                 |             | \$ |              |  |
| 2031 | 11,968         | 11,968      | \$             | \$                 |             | \$ |              |  |
| 2032 | 12,172         | 12,172      | \$             | \$                 |             | \$ |              |  |
| 2033 | 12,377         | 12,377      | \$ -           | \$                 |             | \$ |              |  |
| 2034 | 12,581         | 12,581      | \$ -           | \$                 | -           | \$ |              |  |
| 2035 | 12,786         | 12,786      | \$ -           | \$                 |             | \$ |              |  |
| 2036 | 12,990         | 12,990      | \$ -           | \$                 |             | \$ |              |  |
| 2037 | 13,195         | 13,195      | \$ -           | \$                 | -           | \$ |              |  |
| 2038 | 13,399         | 13,399      | \$ -           | \$                 |             | \$ |              |  |
| 2039 | 13,603         | 13,603      | \$ -           | \$                 |             | \$ |              |  |
| 2040 | 13,808         | 13,808      | \$ -           | \$                 |             | \$ |              |  |
| 2041 | 14,012         | 14,012      | \$ -           | \$                 |             | \$ |              |  |
| 2042 | 14,217         | 14,217      | \$ -           | \$                 |             | \$ | -            |  |

Note: Trucks on average account for approximately 5% of network traffic . Passenger vehicle occupancy assumed to be 1.31

MnDOT Office of Investment Management, Benefit Cost Analysis

Trucks (Value of Time) \$ 33.00

Standard Values, Appendix A, Fiscal Year 2015

| COST  | ⊺3: Traffic Si | gnal / Maintenan           | ce & Operation             | COST 4: Conf | tingency Constru           | ction Costs                | COST 5: Right | of Way (ROW)               |                            |
|-------|----------------|----------------------------|----------------------------|--------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|
|       | YEAR           | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR         | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) | YEAR          | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |
|       | 2021           |                            |                            | 2021         |                            |                            |               |                            |                            |
|       | 2022           | \$ (26,000)                | (26,000)                   | 2022         | \$ (50,500)                | (50,500)                   |               |                            | -                          |
|       | 2023           | \$ (2,500)                 | (2,475)                    | 2023         | \$ -                       |                            |               |                            | -                          |
|       | 2024           | \$ (2,500)                 | (2,451)                    | 2024         |                            |                            |               |                            |                            |
|       | 2025           | \$ (2,500)                 | (2,426)                    | 2025         |                            |                            |               |                            |                            |
|       | 2026           | \$ (2,500)                 | (2,402)                    | 2026         |                            | -                          |               |                            | -                          |
|       | 2027           | \$ (2,500)                 | (2,379)                    | 2027         |                            |                            |               |                            | -                          |
|       | 2028           | \$ (2,500)                 | (2,355)                    | 2028         |                            | -                          |               |                            | -                          |
|       | 2029           | \$ (2,500)                 | (2,332)                    | 2029         |                            | -                          |               |                            | -                          |
|       | 2030           | \$ (2,500)                 | (2,309)                    | 2030         |                            |                            |               |                            | -                          |
|       | 2031           | \$ (2,500)                 | (2,286)                    | 2031         |                            |                            |               |                            |                            |
|       | 2032           | \$ (2,500)                 | (2,263)                    | 2032         |                            |                            |               |                            | -                          |
|       | 2033           | \$ (2,500)                 | (2,241)                    | 2033         |                            |                            |               |                            | -                          |
|       | 2034           |                            | (2,219)                    | 2034         |                            |                            |               |                            |                            |
|       | 2035           | \$ (2,500)                 | (2,197)                    | 2035         |                            |                            |               |                            | -                          |
|       | 2036           | \$ (2,500)                 | (2,175)                    |              |                            |                            |               |                            | -                          |
|       | 2037           | \$ (2,500)                 | (2,153)                    | 2037         |                            | -                          |               |                            | -                          |
|       | 2038           | \$ (2,500)                 | (2,132)                    | 2038         |                            |                            |               |                            | -                          |
|       | 2039           |                            | (2,111)                    | 2039         |                            | -                          |               |                            | -                          |
|       | 2040           |                            | (2,090)                    | 2040         |                            | -                          |               |                            | -                          |
|       | 2041           | \$ (2,500)                 | (2,069)                    | 2041         |                            |                            |               |                            | -                          |
|       | 2042           |                            | (2,049)                    |              |                            |                            |               |                            |                            |
| TOTAL |                | \$ (76,000)                | \$ (71 114)                | TOTAL        | \$ (50,500)                | \$ (50,500)                | TOTAL         | \$                         | \$ -                       |

| B/C Analysis Summary         |             |         |  |  |  |  |
|------------------------------|-------------|---------|--|--|--|--|
| BENEFITS                     | Value(Disco | ounted) |  |  |  |  |
| 1. Travel Time Savings: \$ - |             |         |  |  |  |  |
|                              |             |         |  |  |  |  |
| TOTAL                        | \$          | -       |  |  |  |  |

| COSTS                      | Value(Dis | scounted) |
|----------------------------|-----------|-----------|
| Roadway/Interchange        | \$        | (36,950)  |
| 2. Bridges                 | \$        | -         |
| 3. Traffic Signal/Lighting | \$        | (71,114)  |
| 4. Contingency Costs       | \$        | (50,500)  |
| 5. Right-of-way (ROW)      | \$        | -         |
| Remaining Capital          | \$        | 31,205    |
| TOTAL                      | \$        | (127,358) |

| Benefit/Cost Analysis Results |                   |         |  |
|-------------------------------|-------------------|---------|--|
| 20-Yr Operation Benefit       | \$                | -       |  |
| 20-Yr Safety Benefit          | \$                | 392,411 |  |
| COSTS                         | \$                | 127,358 |  |
| B/C Ratio*:                   | B/C Ratio*: 3.081 |         |  |

| Cost     |                                   | Estimated | Estimated |
|----------|-----------------------------------|-----------|-----------|
| Category | Improvement Description           | NA        | NA        |
|          | Roadway Paving                    | \$0       | \$34,050  |
|          | Drainage and Erosion              | \$0       | \$2,900   |
|          | Misc                              | \$0       | \$0       |
|          | Bridge                            | \$0       | \$0       |
|          |                                   |           |           |
|          | Traffic Signal/Lighting           | \$0       | \$26,000  |
| 4        |                                   |           |           |
| 4        |                                   |           |           |
|          | Total Estimated Construction Cost | \$0       | \$62,950  |
| 4        | Indirect Costs & Contingency      | \$0       | \$31,500  |
|          | Right-of-Way/Easement Costs       | \$0       | \$0       |
| 4        | Professional Services             | \$0       | \$19,000  |
|          | Total Project Costs               | \$0       | \$113,450 |

| COST 1: Roadways/li | nterchange Const | ruction      |
|---------------------|------------------|--------------|
|                     | CHANGE           | Discounted   |
| YEAR                | with Improvement | Value (1.0%) |
| 1EAR 2021           | with improvement | value (1.0%) |
| 2021                | \$ (36.950)      | (00.050      |
| 2022                | . (,,            | (36,950      |
|                     |                  |              |
| 2024                |                  | -            |
| 2025                |                  | -            |
| 2026                |                  |              |
| 2027                |                  |              |
| 2028                |                  | -            |
| 2029                |                  |              |
| 2030                |                  |              |
| 2031                |                  |              |
| 2032                | \$ -             | -            |
| 2033                | \$ -             | -            |
| 2034                | \$ -             | -            |
| 2035                | \$ -             | -            |
| 2036                | \$ -             |              |
| 2037                | \$ -             | -            |
| 2038                | \$ -             |              |
| 2039                | \$ -             |              |
| 2040                | \$ -             | -            |
| 2041                | \$ -             |              |
| 2042                | \$ -             |              |
| TOTAL               | \$ (36,950)      | \$ (36,950   |

| COST 2: Bridge |                  |              |
|----------------|------------------|--------------|
| COST 2. Blidge |                  |              |
|                | CHANGE           | Discounted   |
| YEAR           | with Improvement | Value (1.0%) |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
|                |                  |              |
| TOTAL          | \$ -             | \$ -         |
| *              | •                | •            |

| Remaining   Discount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2022 \$ - 2023 \$ - 2024 \$ - 2024 \$ - 2025 \$ - 2026 \$ - 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 | -     |
| 2023 \$ - 2024 \$ - 2025 \$ - 2026 \$ - 2026 \$ - 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 | -     |
| 2024 \$ - 2025 \$ - 2026 \$ - 2026 \$ - 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 | -     |
| 2025 \$ - 2026 \$ - 2027 \$ - 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 | -     |
| 2026 \$ - 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 | -     |
| 2027 \$ - 2028 \$ - 2029 \$ - 2030 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 2031 \$ - 203 |       |
| 2028 \$ -<br>2029 \$ -<br>2030 \$ -<br>2031 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 2029 \$ -<br>2030 \$ -<br>2031 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 2030 \$ -<br>2031 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 2031 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 2022 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 2032 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 2033 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2034 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2035 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2036 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2037 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2038 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2039 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2040 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 2041 \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| TOTAL \$ 38,077 \$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,205 |

# CSAH 16 (Stoltzman Road) & CSAH 60 (Stadium Road) --- Benefit / Cost Analysis for ALT 4 - 2042 Forecast

| BASE 2021    | Total |
|--------------|-------|
| DFLAY (Stop) | 9.852 |

| 2042 No Improvement | Total  | 2022 No Improvement | Total  |
|---------------------|--------|---------------------|--------|
|                     |        |                     |        |
| DELAY (Stop)        | 14,217 | DELAY (Stop)        | 10,128 |

| 2042 Improvement | Total  | 2022 Improvement | Total |
|------------------|--------|------------------|-------|
|                  |        |                  |       |
| DELAY (Alt)      | 10,250 | DELAY (Alt)      | 6,069 |

| 2042 Changes: | Total   |        |
|---------------|---------|--------|
| DELAY         | (3,967) | -27.9% |

|                         |            | COST ITEM |                |                    |      |  |  |  |
|-------------------------|------------|-----------|----------------|--------------------|------|--|--|--|
|                         | 1          |           |                | 4                  |      |  |  |  |
|                         |            |           | Traffic Signal | Contingency        |      |  |  |  |
| Category                | Roadway    | Bridge    | Lighting       | Construciton Costs | ROW  |  |  |  |
| Capital Value (\$)      | 420,463    | \$0       | \$80,703       | \$ 398,834         | \$0  |  |  |  |
| Remaining Life (%)-20yr | 37%        | 73%       | 22%            | 37%                | 87%  |  |  |  |
| Remaining Life (%)-5yr  | 0%         | 0%        | 0%             | 0%                 | 0%   |  |  |  |
| Remaining Cap. Value    | \$ 155,571 | \$ -      | \$ 17,755      | \$ 147,569         | \$ - |  |  |  |

Note: Assume Expected Life of 30 Years. Analysis Period is 20 years (assume 20 year capital value, remaining life values).

|       | Annual VHT Annualized Savings |             |    |               |     |               |    |              |
|-------|-------------------------------|-------------|----|---------------|-----|---------------|----|--------------|
|       | 2042                          | 2042        | In | nprovement w/ | '00 | cost per hour |    | Discounted   |
| YEAR  | No Improvement                | Improvement | ,  | VHT Savings   | \$  | 20.30         |    | Value (1.0%) |
| 2020  |                               |             |    |               |     |               |    |              |
| 2021  | 9,852                         | 9,852       | \$ | -             | \$  | -             | \$ |              |
| 2022  | 10,128                        | 6,069       | \$ | 4,059.51      | \$  | 109,515.11    | \$ | 108,430.8    |
| 2023  | 10,333                        | 6,278       | \$ | 4,054.89      | \$  | 109,390.37    | \$ | 107,234.9    |
| 2024  | 10,537                        | 6,487       | \$ | 4,050.26      | \$  | 109,265.63    | \$ | 106,052.1    |
| 2025  | 10,742                        | 6,696       | \$ | 4,045.64      | \$  | 109,140.89    | \$ | 104,882.2    |
| 2026  | 10,946                        | 6,905       | \$ | 4,041.01      | \$  | 109,016.15    | \$ | 103,725.1    |
| 2027  | 11,150                        | 7,114       | \$ | 4,036.39      | \$  | 108,891.41    | \$ | 102,580.6    |
| 2028  | 11,355                        | 7,323       | \$ | 4,031.77      | \$  | 108,766.67    | \$ | 101,448.6    |
| 2029  | 11,559                        | 7,532       | \$ | 4,027.14      | \$  | 108,641.94    | \$ | 100,329.0    |
| 2030  | 11,764                        | 7,741       | \$ | 4,022.52      | \$  | 108,517.20    | \$ | 99,221.6     |
| 2031  | 11,968                        | 7,950       | \$ | 4,017.90      | \$  | 108,392.46    | \$ | 98,126.2     |
| 2032  | 12,172                        | 8,159       | \$ | 4,013.27      | \$  | 108,267.72    | \$ | 97,042.9     |
| 2033  | 12,377                        | 8,368       | \$ | 4,008.65      | \$  | 108,142.98    | \$ | 95,971.4     |
| 2034  | 12,581                        | 8,577       | \$ | 4,004.02      | \$  | 108,018.24    | \$ | 94,911.5     |
| 2035  | 12,786                        | 8,786       | \$ | 3,999.40      | \$  | 107,893.51    | \$ | 93,863.3     |
| 2036  | 12,990                        | 8,995       | \$ | 3,994.78      | \$  | 107,768.77    | \$ | 92,826.5     |
| 2037  | 13,195                        | 9,204       | \$ | 3,990.15      | \$  | 107,644.03    | \$ | 91,801.1     |
| 2038  | 13,399                        | 9,413       | \$ | 3,985.53      | \$  | 107,519.29    | \$ | 90,786.8     |
| 2039  | 13,603                        | 9,622       | \$ | 3,980.91      | \$  | 107,394.55    | \$ | 89,783.7     |
| 2040  | 13,808                        | 9,832       | \$ | 3,976.28      | \$  | 107,269.81    | \$ | 88,791.5     |
| 2041  | 14,012                        | 10,041      | \$ | 3,971.66      | \$  | 107,145.07    | \$ | 87,810.1     |
| 2042  | 14,217                        | 10,250      | \$ | 3,967.03      | \$  | 107,020.34    | \$ | 86,839.5     |
| TOTAL |                               |             |    |               | s   | 2,273,622     | s  | 2,042,46     |

| Note: Trucks on average account for approximately 5% of network traffic . Passenger vehicle occupancy assumed to be 1.31 |  |
|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                          |  |

MnDOT Office of Investment Management, Benefit Cost Analysis

| COST 3: Traffic Signal / Maintenance & Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard Values, Appendix | A, Fiscal Year 2015 |                |              |                 |              |               |              |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|----------------|--------------|-----------------|--------------|---------------|--------------|----------------------------|
| YEAR         CHANGE with Improvement         Discounted Value (1.0%)         YEAR         Discounted With Improvement         VEAR With Improvement         Discounted Value (1.0%)         YEAR         CHANGE With Improvement         Discounted Value (1.0%)         YEAR         With Improvement         VEAR With Imp | COST 3: Traffic S         | ignal / Maintenan   | ce & Operation | COST 4: Cont | ingency Constru | ction Costs  | COST 5: Right | of Wav (ROW) |                            |
| 2022 \$ (80,703) (80,703) (80,703) (2022 \$ (398,834) (398,834)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | CHANGE              | Discounted     |              | CHANGE          | Discounted   |               | CHANGE       | Discounted<br>Value (1.0%) |
| 2023 \$ (1,000) (990) 2023 \$   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021                      |                     |                | 2021         |                 |              |               |              |                            |
| 2024   \$ (1,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2022                      | \$ (80,703)         | (80,703)       | 2022         | \$ (398,834)    | (398,834)    |               |              | -                          |
| 2025 \$ (1,000) (971) 2025 \$   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              | \$ -            |              |               |              | -                          |
| 2026   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                     |                |              |                 | -            |               |              | -                          |
| 2027   \$ (1,000) (951)   2027   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                     |                |              |                 |              |               |              | -                          |
| 2028   \$ (1,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              | -                          |
| 2029   \$ (1,000) (933) 2029   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              | -                          |
| 2030   \$ (1,000) (923) 2030   \$ -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                     |                |              |                 |              |               |              | -                          |
| 2031   \$ (1,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              |                            |
| 2032   \$ (1,000) (905)   2032   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                     |                |              |                 |              |               |              | -                          |
| 2033   \$ (1,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              | -                          |
| 2034   \$ (1,000) (887) 2034   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              |                            |
| 2035   \$ (1,000)   (879)   2036   \$ -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |                |              |                 |              |               |              | -                          |
| 2036   \$ (1,000) (870) 2036   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                |              |                 |              |               |              | +                          |
| 2037   \$ (1,000   (861)   2037   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                     |                |              |                 |              |               |              |                            |
| 2038 \$ (1,000) (853) 2038 \$<br>2039 \$ (1,000) (844) 2039 \$<br>2040 \$ (1,000) (836) 2040 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                     |                |              |                 |              |               |              | -                          |
| 2039 \$ (1,000 (844) 2039 \$ 2040 \$ (1,000) (836) 2040 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                     |                |              |                 |              |               |              | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2039                      |                     |                |              |                 | -            |               |              |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2040                      |                     |                |              |                 |              |               |              | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2041                      | \$ (1,000)          | (828)          | 2041         | \$ -            |              |               |              | -                          |
| 2042 \$ (1,000) (820) 2042 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2042                      | \$ (1,000)          | (820)          | 2042         | \$ -            | -            |               |              |                            |
| TOTAL \$ (100,703) \$ (98,749) TOTAL \$ (398,834) \$ (398,834) TOTAL \$ - \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL                     | \$ (100,703)        | \$ (98,749)    | TOTAL        | \$ (398,834)    | \$ (398,834) | TOTAL         | \$ -         | \$ -                       |

Trucks (Value of Time) \$ 33.00

| B/C Analys           | is Sumn | nary       |
|----------------------|---------|------------|
| BENEFITS             | Value(D | iscounted) |
| Travel Time Savings: | \$      | 2,042,460  |
| TOTAL                | •       | 2 042 460  |

| COSTS                      | Value(Discounted) |           |  |
|----------------------------|-------------------|-----------|--|
| Roadway/Interchange        | \$                | (420,463) |  |
| 2. Bridges                 | \$                | -         |  |
| 3. Traffic Signal/Lighting | \$                | (98,749)  |  |
| 4. Contingency Costs       | \$                | (398,834) |  |
| 5. Right-of-way (ROW)      | \$                | -         |  |
| Remaining Capital          | \$                | 262,987   |  |
| TOTAL                      | \$                | (655,058) |  |

| Benefit/Cost Analysis Results |    |           |  |  |
|-------------------------------|----|-----------|--|--|
| 20-Yr Operation Benefit       | \$ | 2,042,460 |  |  |
| 20-Yr Safety Benefit          | \$ | 320,581   |  |  |
| COSTS                         | \$ | 655,058   |  |  |
| B/C Ratio*:                   |    | 3.607     |  |  |

| Cost     |                                   | Estimated | Estimated |
|----------|-----------------------------------|-----------|-----------|
| Category | Improvement Description           | NA        | NA        |
|          | Roadway Paving                    | \$0       | \$352,538 |
|          | Drainage and Erosion              | \$0       | \$67,925  |
|          | Misc                              | \$0       | \$0       |
| 2        | Bridge                            | \$0       | \$0       |
| 2        |                                   |           |           |
| 3        | Traffic Signal/Lighting           | \$0       | \$80,703  |
| 4        |                                   |           |           |
| 4        |                                   |           |           |
|          | Total Estimated Construction Cosl | \$0       | \$501,166 |
| 4        | Indirect Costs & Contingency      | \$0       | \$248,834 |
| 5        | Right-of-Way/Easement Costs       | \$0       | \$0       |
| 4        | Professional Services             | \$0       | \$150,000 |
|          | Total Project Costs               | \$0       | \$900,000 |

| COST 1: | Roadways/Ir | nterchange Const           | ruction                    |
|---------|-------------|----------------------------|----------------------------|
|         | YEAR        | CHANGE<br>with Improvement | Discounted<br>Value (1.0%) |
|         | 2020        |                            |                            |
|         | 2021        |                            |                            |
|         | 2022        | \$ (420,463)               | (420,463                   |
|         | 2023        | \$ -                       | -                          |
|         | 2024        | \$ -                       | -                          |
|         | 2025        | \$ -                       | -                          |
|         | 2026        | \$ -                       | -                          |
|         | 2027        | \$ -                       | -                          |
|         | 2028        | \$ -                       | -                          |
|         | 2029        | \$ -                       | -                          |
|         | 2030        | \$ -                       | -                          |
|         | 2031        | \$ -                       | -                          |
|         | 2032        | \$ -                       | -                          |
|         | 2033        | \$ -                       | -                          |
|         | 2034        | \$ -                       | -                          |
|         | 2035        | \$ -                       | -                          |
|         | 2036        | \$ -                       | -                          |
|         | 2037        | \$ -                       | -                          |
|         | 2038        | \$ -                       | -                          |
|         | 2039        | \$ -                       | -                          |
|         | 2040        | \$ -                       | -                          |
|         | 2041        | \$ -                       | -                          |
|         | 2042        | \$ -                       |                            |
| TOTAL   |             | \$ (420,463)               | \$ (420,463                |

|                 | COST 2: Bridge |      |                            |
|-----------------|----------------|------|----------------------------|
|                 | YEAR           |      | Discounted<br>Value (1.0%) |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
|                 |                |      |                            |
| TOTAL \$ - \$ - | TOTAL          | \$ - | \$ -                       |

| Remaining Capital Va | lue           |              |
|----------------------|---------------|--------------|
|                      | Remaining     | Discounted   |
| YEAR                 | Capital Value | Value (1.0%) |
| 202                  |               |              |
| 2022                 | \$ -          |              |
| 2023                 |               |              |
| 2024                 | - \$          |              |
| 2025                 | \$ -          |              |
| 2026                 | \$ -          |              |
| 2027                 | ' \$ -        |              |
| 2028                 | - 3           |              |
| 2029                 | - \$          |              |
| 2030                 | \$ -          |              |
| 203                  | -             |              |
| 2032                 | 2 \$ -        |              |
| 2033                 | 3 \$ -        | -            |
| 2034                 | - \$          |              |
| 2035                 | 5 \$ -        | -            |
| 2036                 | \$ -          | -            |
| 2037                 | '\$-          | -            |
| 2038                 |               |              |
| 2039                 | \$ -          | -            |
| 2040                 | \$ -          |              |
| 204                  | \$ -          |              |
| 2042                 | \$ 320,895    | 262,987      |
| TOTAL                | \$ 320,895    | \$ 262,987   |