Intersection Control Evaluation

Stadium Road at Pohl Road

in Mankato, Blue Earth County, Minnesota

Mankato/North Mankato Area Planning Organization

October 2016

SRF No. 016 09243

Intersection Control Evaluation

Stadium Road at Pohl Road

Proposed Letting Date: TBD

Report Certification:

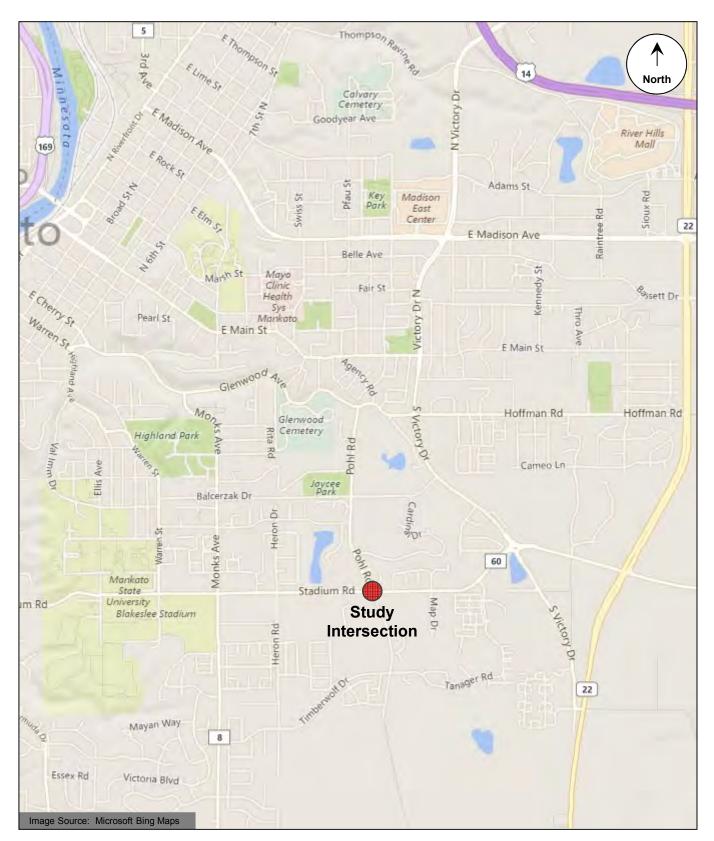
I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Scott C. Poska	47068
Print Name	Reg. No.
At C. Jel	10-31-16
Signature	Date
Approved: City of Mankato	
City Engineer	Date
Agin chilyes	12-13-2016
Blue Earth County	Date
Public Works Director	

Table of Contents

Introduction	1
Existing Intersection Characteristics	
Future Conditions	
Traffic Volumes	
Analysis of Alternatives	
Alternatives Assessment	
Conclusions and Recommendations	17
Appendix	

Introduction


This report contains the intersection control evaluation results for the Stadium Road (CSAH 60) at Pohl Road intersection in Mankato, Blue Earth County, Minnesota (see Figure 1). The purpose of the evaluation was to analyze the intersection control alternatives for the intersection to identify the long-term preferred intersection control. The following intersection control alternatives were considered applicable and are analyzed within this report:

- All-Way Stop Control
- Roundabout Control
- Traffic Signal Control

A mini-roundabout variation was also explored. According to *Mini-Roundabouts Technical Summary* (Federal Highway Administration, 2010), mini-roundabouts are best suited/most efficient in lower speed environments (30 mph or less), and are generally recommended for intersections where the total entering daily traffic volume does not exceed approximately 15,000 vehicles. The intersection currently has 17,700 entering vehicles and Stadium Road has a posted speed of 40 mph. Large vehicles are typically required to over-run the fully traversable central island, and high volumes of large vehicles will significantly reduce the capacity of a mini-roundabout, and may lead to rapid wear of the roadway markings. Based on these factors, the mini-roundabout option was not analyzed further at the study intersection.

A detailed warrants analysis, operational analysis, safety analysis, and planning-level cost analysis were performed to determine the preferred intersection control alternative. In addition to these analyses, other factors considered for this evaluation that were applicable to determining the long-term preferred intersection control included:

- Right-of-Way Considerations
- Transportation System Considerations
- Pedestrian and Bicycle Considerations
- Local Acceptance

Study Intersection

Figure 1

Existing Intersection Characteristics

Existing Conditions

The study intersection is located in the City of Mankato, Blue Earth County, as shown in Figure 1. Stadium Road (CSAH 60) is a three-lane undivided county road with a speed limit of 40 mph and is functionally classified as a Minor Arterial. Pohl Road was recently restriped from a four-lane to a three-lane undivided roadway. Pohl Road is a city street with a speed limit of 30 mph and is functionally classified as a Major Collector north of Stadium Road and a Local road to the south of Stadium Road. The intersection of Stadium Road and Pohl Road is skewed and is currently all-way stop controlled. There are bicycle and pedestrian accommodations on both sides of Stadium Road and the west side of Pohl Road. There are marked pedestrian crossings that cross Pohl Road on both sides of Stadium Road. The adjacent area has primarily residential land uses with some industrial to the south and east. Minnesota State University is located approximately one mile to the west. The existing lane configurations for the Stadium Road and Pohl Road intersection are listed in Table 1 below and are shown in Figure 2.

Table 1. Existing Conditions

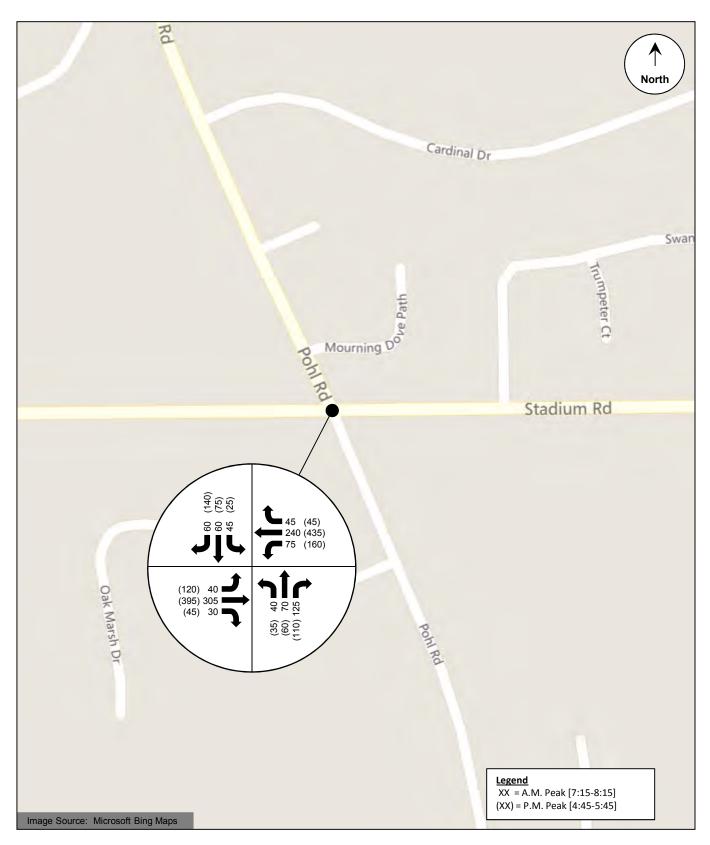
Leg	Configuration	
Eastbound Stadium Road	oad One left-turn lane and one shared thru/right-turn lane	
Westbound Stadium Road	One left-turn lane and one shared thru/right-turn lane	
Northbound Pohl Road	One left-turn lane and one shared thru/right-turn lane	
Southbound Pohl Road	One left-turn lane and one shared thru/right-turn lane	

Crash History

Crash data was obtained from the Minnesota Crash Mapping Analysis Tool (MnCMAT) database for a five-year period from 2011 to 2015. There were thirteen recorded crashes at the study intersection during the analysis period. Detailed crash data is provided in the Appendix. This results in a crash rate of 0.40 crashes per million entering vehicles, which is slightly above the statewide average of 0.35 for all-way stop controlled intersections, but is still well below the critical crash rate of 0.54 (0.95 level of confidence) for this intersection.

Future Conditions

Based on discussions with city staff in the summer of 2016, no short-term improvements to Stadium Road, Pohl Road, or the study intersection are planned. Future development south of the study intersection will likely necessitate an intersection control change to support traffic growth. For the alternatives analysis, the existing lane configurations under all-way stop control (listed in Table 1 and shown in Figure 2) were assumed to be the same for the traffic signal control alternative. The lane configurations for the roundabout control alternative are listed in Table 2 below and are shown in Figure 3. The roundabout concept shown is offset from the center of the existing intersection to minimize impacts to the property in the northeast quadrant.


Table 2. Proposed Lane Configurations for Roundabout Control Alternative

Leg	Configuration
Eastbound Stadium Road	One shared lane (all movements)
Westbound Stadium Road	One shared lane (all movements)
Northbound Pohl Road	One shared lane (all movements)
Southbound Pohl Road	One shared lane (all movements)

Traffic Volumes

Hourly traffic volumes including the existing a.m. and p.m. peak hour were collected in early May 2016 by the City of Mankato prior to the conclusions of the spring term at Minnesota State University and are shown in Figure 4. Pedestrian and bicycle volumes were also collected. Growth rates from the MAPO 2045 Transportation Plan (1.6% for the north leg, 1.3% for the east leg, 2.5% for the south leg, and 1.0% for the west leg) were used to determine Forecasted Year 2036 peak hour turning movement volumes, which are shown in Figure 5.

Existing Year 2016 Volumes

Figure 4

Forecasted Year 2036 Volumes

Figure 5

Analysis of Alternatives

The analysis of the all-way stop control, traffic signal control, and roundabout control alternatives included a warrants analysis, operational analysis, planning-level crash analysis, and a planning-level cost analysis. Existing Year 2016 and Forecasted Year 2036 volumes with proposed lane configurations discussed previously were used for the analysis.

Warrants Analysis

A warrants analysis was performed for the traffic signal control alternative as outlined in the February 2015 *Minnesota Manual on Uniform Traffic Control Devices* (MN MUTCD). The signal warrants analysis was based on the assumptions shown in Table 3.

Table 3. Warrants Analysis Assumptions

Leg	Geometry	Speed
Eastbound Mainline (Stadium Road)	2 or more approach lanes	40 mph
Westbound Mainline (Stadium Road)	2 or more approach lanes	40 mph
Northbound Minor Street (Pohl Road)	2 or more approach lanes	30 mph
Southbound Minor Street (Pohl Road)	2 or more approach lanes	30 mph

Because of the shared northbound and southbound thru/right-turn lanes, minor approach right turns were included in the analysis. Table 4 provides a summary of the results of the warrants analysis. The detailed warrants analysis can be found in the Appendix.

Table 4. Warrants Analysis Results

MN MUTCD Warrant	Hours	Year 2016 Volumes		Forecasted Year 2036 Volumes	
WIN MOTOD Wallant	Required	Hours Met	Warrant Met	Hours Met	Warrant Met
Warrant 1A: Minimum Vehicular Volume	8	3	No	10	Yes
Warrant 1B: Interruption of Continuous Traffic	8	4	No	8	Yes
Warrant 1C: Combination of Warrants	8	9	Yes	11	Yes
Warrant 2: Four-Hour Volume	4	2	No	9	Yes
Warrant 3B: Peak-Hour Volume	1	0	No	2	Yes
Multi-way Stop Applications Condition C	8	14	Yes	15	Yes

Warrants 4-9 were investigated but were determined to be not applicable. Results of the warrants analysis indicate that Existing Year 2016 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrant 1 (Condition C), while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 1 (Conditions A, B, and C), 2, and 3B.

Operational Analysis

An initial planning-level analysis was performed for the roundabout control alternative based on Highway Capacity Manual methods found in *NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition* (Transportation Research Board, 2010). The analysis involved testing the theoretical capacity of a single-lane roundabout against the Forecasted Year 2036 entering and circulating volumes. As shown in Chart 1, the Forecasted Year 2036 volumes do not exceed the theoretical capacity of a single-lane roundabout. Therefore, a single lane roundabout was selected for further analysis.

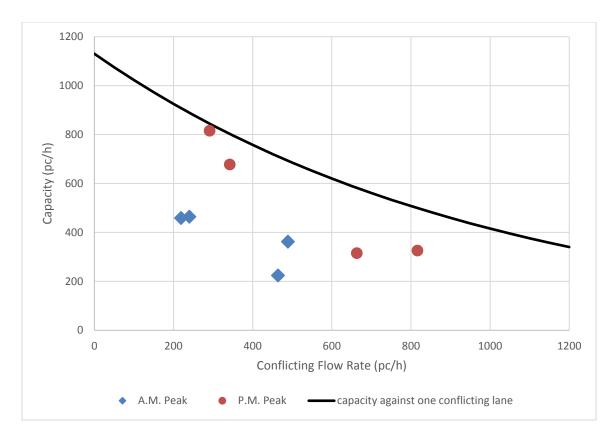


Chart 1. Single-Lane Roundabout Entry Lane Capacity (Forecasted Year 2036 volumes)

Operational analysis of the roundabout control alternative was performed using RODEL and Highway Capacity Software (HCS). RODEL is a software program that is based on existing roundabout operational research and uses an empirical formula method to determine roundabout delay based on geometric features and traffic flows. RODEL is the current MnDOT accepted analysis tool for evaluating roundabouts. HCS is based on methodologies found in the 2010 Highway Capacity Manual (HCM) which is considered a conservative approach to determining the capacity of a roundabout. It is important to note that RODEL and HCS only report "stop" or "control" delay. Therefore, in order to determine the total delay, "geometric" delay, or delay due to vehicle deceleration and acceleration through an intersection, must be added to the "stop" or "control" delay.

The detailed operational analysis of all-way stop control and traffic signal control was performed using methods outlined in the 2010 HCM using Synchro/SimTraffic. Synchro/SimTraffic is capable of calculating various measures of effectiveness such as control delay, queuing, and total travel time impacts. SimTraffic results are reported for the analysis.

The operational analysis identified a Level of Service (LOS), which indicates how well an intersection is operating based on average delay per vehicle. Intersections are given a ranking from LOS A to LOS F. LOS A indicates the best traffic operation and LOS F indicates an intersection where demand exceeds capacity. LOS A through LOS D are generally considered acceptable. RODEL results for a Confidence Level (CL) of 50% and 85% were determined.

50% CL results are typically used for roundabout analysis while the 85% CL results indicate the sensitivity of the roundabout design. When a substantial degradation in LOS is expected from 50% CL to 85% CL, designers should exercise caution in the design of the roundabout to ensure adequate capacity is provided.

Tables 5 and 6 provide a summary of the operational analysis for Existing Year 2016 and Forecasted Year 2036 conditions, respectively. Detailed operational analysis results can be found in the Appendix.

Table 5. Existing Year 2016 Operational Analysis Results

	Analysis Tool		A.M. Peak		P.M. Peak	
Alternative			Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control	Synchro/SimTraffic		5/7	A/A	12/15	В/В
Traffic Signal Control	Synchro/SimTraffic		7/9	A/A	12/13	В/В
	HCS 2010		9/9	A/A	15/17	B/C
Roundabout Control	RODEL	50% CL	5/5	A/A	7/8	A/A
		85% CL	7/7	A/A	13/17	B/C

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Table 6. Forecasted Year 2036 Operational Analysis Results

	Analysis Tool		A.M. Peak		P.M. Peak	
Alternative			Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control	Synchro/SimTraffic		14/26	B/D	>100/>100	F/F
Traffic Signal Control	Synchro/SimTraffic		9/10	A/B	20/22	C/C
	HCS 2010		11/14	В/В	32/ 46	D/ E
Roundabout Control	RODEL	50% CL	6/6	A/A	12/17	B/C
	NODEL	85% CL	9/10	A/A	49/93	E/F

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Results of the operational analysis indicate that under the existing all-way stop control, the intersection operates with an acceptable level of service. However, by Forecasted Year 2036, the all-way stop control alternative would operate with an unacceptable level of service during the p.m. peak. Therefore the all-way stop control alternative was not considered further as a viable long-term alternative. The traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions, though the single lane roundabout control alternative would be near capacity during the p.m. peak. The p.m. peak hour factor is 0.95, which indicates this peak hour volume is sustained over the entire peak hour.

Safety Analysis

A crash analysis was performed to determine the projected crashes per year for Year 2016 and Forecasted Year 2036 conditions for the study intersection. Crash rates from the MnDOT Green Sheets (2011 to 2015 data) were used for the crash analysis of the alternatives. According to NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition (Transportation Research Board, 2010), the conversion of an all-way stop controlled intersection to a roundabout has an insignificant impact on safety. Therefore, the crash rate for all-way stop control was used for the roundabout control alternative. A summary of the crash analysis is shown in Table 7.

Table 7. Crash Analysis Results

Alternative	Intersection AADT (2016)	Intersection AADT (2036)	Crash Rate	Projected Crashes/Year (2016)	Projected Crashes/Year (2036)
Traffic Signal Control	17.700	22.700	0.52	4	5
Roundabout Control	17,700	22,700	0.35	2	3

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative.

Studies have determined that the installation of a roundabout can improve overall safety of an intersection when compared to other forms of intersection control. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased. A roundabout virtually eliminates right-angle and left-turn head-on crashes. Studies have shown the frequency of injury crashes is reduced more than property damage only crashes.

At a roundabout, drivers must be aware of traffic traveling around the circle when merging on or off the roundabout. Conversely, drivers at a traditional intersection must be aware of vehicles at all approaches and the movements they are making. This issue is most prevalent at stop-controlled intersections where there is not a traffic signal to control vehicle movements.

Planning-Level Cost Analysis

Capital Costs

The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost than the traffic signal control alternative.

Operation and Maintenance Costs

Traffic signals typically have higher operation and maintenance costs than roundabouts because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island.

A cost analysis summary is shown in Table 8. Detailed cost analysis results can be found in the Appendix.

Table 8. Cost Analysis Summary

Alternative	Capital Costs (1)	Operation/Maintenance Costs (annual)
Traffic Signal Control	\$300,000	\$4,000-\$6,000
Roundabout Control	\$1,130,000	\$500-\$1,000

⁽¹⁾ Does not include engineering or right-of-way costs.

Alternatives Assessment

Right-of-Way Considerations

The intersection geometry for the traffic signal control alternative would use existing conditions and therefore no additional right-of-way would be expected. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. As previously stated, the roundabout was designed off center to avoid impacts to the property in the northeast quadrant. Therefore, right-of-way impacts in the other three quadrants are more significant, but do not require building acquisition.

Transportation System Considerations

There are three existing traffic signals two-thirds of a mile west of the study intersection at Monks Avenue, Warren Street, and Ellis Avenue. These three traffic signals are at the Minnesota State University campus and are spaced a quarter mile apart. The traffic signal control alternative would extend the continuity of this intersection control type to the west, however, it would likely not operate in coordination with the three signals to the west. There is an existing roundabout two-thirds of a mile east of the study intersection at the Stadium Road and Victory Drive intersection. The roundabout control alternative would match with the intersection control to the east. The roundabout control alternative could be considered a traffic calming measure for the surrounding residential area.

Pedestrian and Bicycle Considerations

As previously mentioned, there are trails/sidewalks on both sides of Stadium Road and the west side of Pohl Road. Both Stadium Road and Pohl Road also have shoulders that can be utilized as bike lanes. Pedestrian accommodations can be provided regardless of selected intersection control. The design of a roundabout allows pedestrians to cross one direction of traffic at a time with a refuge space in the middle of each leg of the roundabout, and these short crossing distances and reduced travel speeds of traffic improve pedestrian safety. Their route is slightly longer since they are kept to the outside of the inscribed circle. The roundabout concept design shown includes slip ramps to transition bicyclists between on-street bike lanes and multi-use trails around the perimeter of the roundabout. The design of signalized intersections can create a safe environment for pedestrian crossings with the use of pedestrian signal phasing. This phasing allows pedestrians to safely cross an intersection while vehicular movements are served. Although signalized intersections can provide indications showing pedestrian right-of-way, potential conflicts can come from red-light running through vehicles and permissive turning traffic.

Local Acceptance

Drivers are familiar with traveling through signalized intersections since there are many intersections in the area under this type of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area including one two-thirds of a mile east at Stadium Road and Victory Drive.

Conclusions and Recommendations

The following conclusions are provided for this intersection control evaluation for the Stadium Road at Pohl Road intersection in Mankato, Blue Earth County, Minnesota:

• Warrants Analysis

Results of the warrants analysis indicate that Existing Year 2016 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrant 1 (Condition C), while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 1 (Conditions A, B, and C), 2, and 3B.

Operational Analysis

Results of the operational analysis indicate that all-way stop is not a viable alternative long-term. Both the traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions, but the roundabout control alternative would be near capacity during the p.m. peak.

Safety Analysis

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased.

• Planning-Level Cost Analysis

The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements, which would be approximately \$300,000. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost estimate of approximately \$1,130,000. Traffic signals typically have higher operation and maintenance costs because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island.

• Right-of-Way Considerations

The intersection geometry for the traffic signal control alternative would use existing conditions and therefore no additional right-of-way would be expected. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. The roundabout was designed off center to avoid impacts to the property in the northeast quadrant. Therefore, right-of-way impacts in the other three quadrants are more significant, but do not require building acquisition. The roundabout control alternative could be considered a traffic calming measure for the surrounding residential area.

• Transportation System Considerations

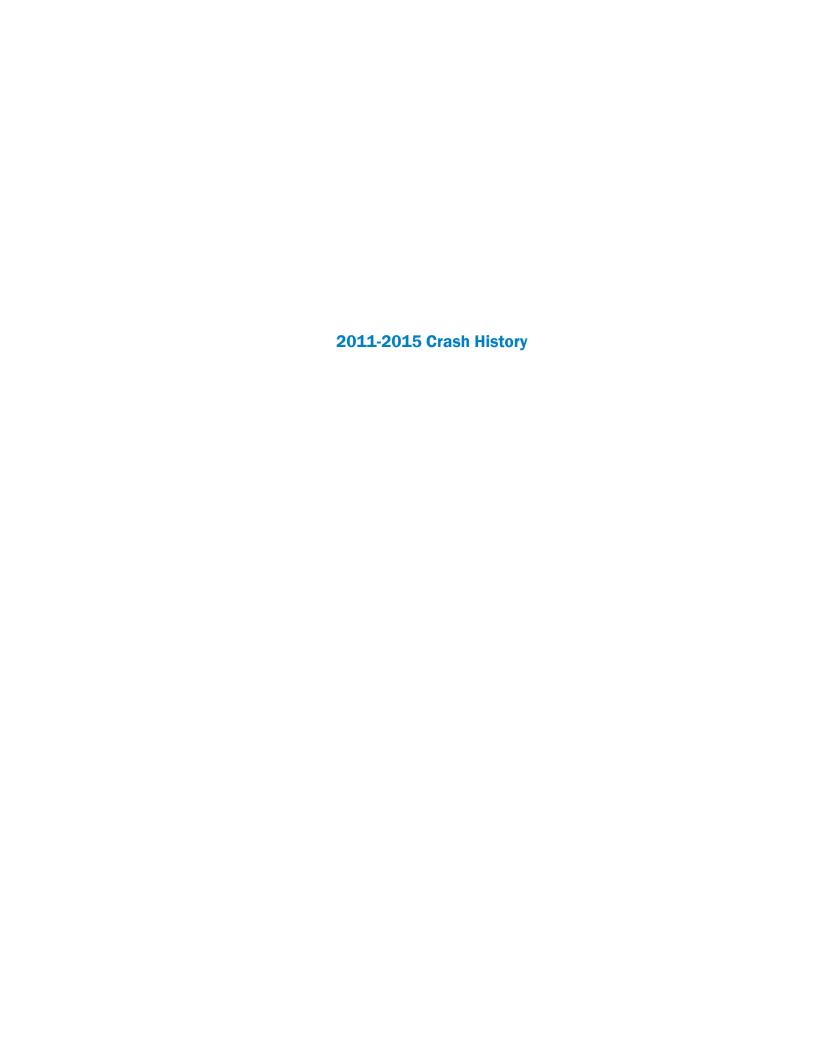
There are three existing traffic signals at Minnesota State University two-thirds of a mile west of the study intersection. The traffic signal control alternative would extend the continuity of this intersection control to the west, however, it would likely not operate in coordinate with the three signals to the west. There is an existing roundabout two-thirds of a mile east of the study intersection at the Stadium Road and Victory Drive intersection. The roundabout control alternative would match with the intersection control to the east through the residential area.

• Pedestrian and Bicycle Considerations

The design of signalized intersections can take pedestrian crossings and safety into consideration with the use of pedestrian signal phasing. The design of a roundabout allows pedestrians to cross one direction of traffic at a time on each leg of the roundabout. Their route is slightly longer since they are kept to the outside of the inscribed circle.

• Local Acceptance

Drivers are familiar with traveling through signalized intersections since there are many intersections in the area under this type of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area including one two-thirds of a mile east at Stadium Road and Victory Drive.


A decision matrix was developed to help evaluate the key factors and is provided on the following page. Based on the results of this Intersection Control Evaluation, both the traffic signal control and roundabout control alternatives are viable options for the Stadium Road at Pohl Road intersection. A roundabout would have more capital and right-of-way costs, but would have lower annual operation and maintenance costs. The traffic signal control and roundabout control alternatives have comparable operations near-term and during the forecasted a.m. peak, but the roundabout control alternative would be near capacity during the p.m. peak under forecasted conditions. However, compared to a traffic signal, a roundabout would have more consistent off-peak operations throughout the day when traffic volumes are lower. Therefore, the roundabout control alternative is recommended.

Alternatives Decision Matrix: Stadium Road at Pohl Road

<u>Factor</u>		All-Way Stop Control	Traffic Signal Control	Roundabout Control	Recommended Alternative(s) Based on Factor
Warrants	2016	AWSC warrant met	Existing Year 2016 volumes meet traffic signal control warrants	N/A	All-Way Stop Control Traffic Signal Control Roundabout Control
Analysis	2036	AWSC warrant met	Forecasted Year 2036 volumes meet traffic signal control warrants	N/A	All-Way Stop Control Traffic Signal Control Roundabout Control
Operational	2016	Acceptable LOS	Acceptable LOS	Acceptable LOS Consistent off-peak operations	Traffic Signal Control Roundabout Control
Analysis	2036	Unacceptable p.m. peak LOS with Forecasted Year 2036 volumes	Acceptable LOS	Near capacity during the p.m. peak under forecasted conditions	
Safety	Pro(s):	N/A	Signal indications show vehicle right-of-way	Least number of crashes expected Lower vehicle speeds through intersection	Roundabout Control
Analysis	Con(s):	N/A	Slightly more crashes expected than roundabout	Drivers select acceptable gaps	
Cost	Pro(s):	N/A	Lower capital costs (\$300,000) than roundabout control	Lower operation/maintenance costs than traffic signal control	Traffic Signal Control
Analysis Con(s		N/A	Higher operation/maintenance costs than roundabout control	 Higher capital costs (\$1,130,000) than traffic signal control Requires substantial reconstruction 	
Right-of-Way	Pro(s):	N/A	No ROW impacts	none	Traffic Signal Control
Night-or-way	Con(s):	N/A	none	Requires additional ROW in all four quadrants	
Transportation System	Pro(s):	N/A	Provides control continuity along Stadium Road to the west	Provides control continuity along Stadium Road to the east	Traffic Signal Control Roundabout Control
Considerations	Con(s):	N/A	Would likely not operate in coordination with other signals	none	
Pedestrian and Bicycle	Pro(s):	N/A	Pedestrian pushbuttons and signal phasing	Pedestrian Refuge islands Bike slip ramps Lower vehicle speeds thru intersection	Traffic Signal Control Roundabout Control
Considerations	Con(s):	N/A	Pedestrian signal phasing can lead to a false sense of security	Longer route No pedestrian phase	
Local	Pro(s):	N/A	• Familiar to drivers	• Familiar to drivers	Traffic Signal Control Roundabout Control
Acceptance	Con(s):	N/A	none	none	

Appendix

- 2011-2015 Crash History
- Existing Year 2016 Warrants Analysis
- Forecasted Year 2036 Warrants Analysis
- Existing Year 2016 Detailed Operational Analysis
- Forecasted Year 2036 Detailed Operational Analysis
- Detailed Cost Analysis

Crash Detail Report

Stadium Road and Pohl Road

Report Version 1.0 March 2010

Date: 07/30/2011 Crash ID: 112110156

Sys: 05-MSAS Time: 2156

First Event: ON ROADWAY

Route: 24200140 000+00.363 City: MANKATO County: BLUE EARTH

Severity: POSSIBLE INJURY

Road Type: 2 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION

Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: DRY Diagram: REAR END Light Cond: DARK - STREET LIGHTS ON Officer:

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: CLEAR # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STOPPED TRAFFIC Veh Type: PASSENGER CAR

Age: 18 Gender: Μ

> Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NO IMPROPER DRIVING Unit 2

STRAIGHT AHEAD

PASSENGER CAR

NORMAL

DISTRACTION

FAIL TO YIELD ROW

Unit 3

Sys: 04-CSAH **Crash ID:** 112410226 **Date:** 08/23/2011 **Time:** 0555 **Route:** 07000060

001+00.650 County: BLUE EARTH City: MANKATO

Speed Limit: 40

Officer:

Diagram: REAR END

Severity: POSSIBLE INJURY First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Light Cond: DARK - STREET LIGHTS ON

Weather 1: CLOUDY Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir:

Veh Act: STRAIGHT AHEAD

Veh Type: PASSENGER CAR

45 Age: Gender:

Cont Fact 2

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED

NOT SPECIFIED

Unit 2

00

PASSENGER CAR

20

NOT SPECIFIED NOT SPECIFIED

08/01/2016 Page 1 of 7 MnCMAT 1.0.0

Unit 3

NOT SPECIFIED

Sys: 05-MSAS **Crash ID:** 122900077 **Date:** 10/16/2012 **Time:** 0936

Route: 24200140 000+00.364 County: BLUE EARTH City: MANKATO

Speed Limit: 30

Officer:

Diagram: REAR END

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: WET Light Cond: DAYLIGHT

Weather 1: CLOUDY Reliability: CONFIDENT Weather 2: CLOUDY # of Vehicles: 2.00

Unit 1

Trav Dir: S

Veh Act: RIGHT TURN

Veh Type: PASSENGER CAR

Age: 42 Gender: М

> Cond: NORMAL

Cont Fact 1 IMPROPERLY PARKED

Cont Fact 2 NO IMPROPER DRIVING Unit 2

S

RIGHT TURN

PASSENGER CAR

50 М

NORMAL

FOLLOWING TOO CLOSELY

NO IMPROPER DRIVING

Unit 3

Crash ID: 123450082 **Date:** 12/10/2012 **Time:** 0747 Sys: 05-MSAS

Route: 24200140 000+00.374 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE To Junction: 4-LEGGED INTERSECTION Road Type: 4 6 LANES UNDIV 2 WAY

Road Char: STRAIGHT AND LEVEL Crash Type: COLL W/SIGN POLE Speed Limit: 30

Surf Cond: ICE/PACKED SNOW Light Cond: DAYLIGHT

Weather 1: CLEAR

Weather 2: NOT SPECIFIED

First Event: OFF ROADWAY ON SHOULDER

Traffic Device: STOP SIGN 4-WAY

Diagram: OTHER

Officer:

Reliability: CONFIDENT # of Vehicles: 1.00

Unit 1

Trav Dir:

STRAIGHT AHEAD Veh Act:

Veh Type: PASSENGER CAR

46 Age: Gender:

Cond: NORMAL Cont Fact 1 WEATHER

Cont Fact 2 SKIDDING Unit 2

Unit 3

Sys: 04-CSAH Crash ID: 132680037 **Date:** 08/23/2013 **Time:** 1500

Route: 07000060 001+00.650 County: BLUE EARTH City: MANKATO

Severity: POSSIBLE INJURY First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: DRY Diagram: REAR END

Light Cond: DAYLIGHT Officer:

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STOPPED TRAFFIC

Veh Type: PASSENGER CAR

Age: 19 Gender: M

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED

Crash ID: 132970051

County: BLUE EARTH

Unit 2

Ε

PARKED

SPORT UNTILITY VEHICLE

18 М

> NOT SPECIFIED NOT SPECIFIED

> NOT SPECIFIED

Sys: 04-CSAH **Time:** 1740

Route: 07000060 001+00.656

Unit 3

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED

Date: 09/22/2013

City: MANKATO

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: DAYLIGHT

Weather 1: CLEAR

Weather 2: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Speed Limit:

Diagram: REAR END

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

Veh Act: STRAIGHT AHEAD

Veh Type: MOTORCYCLE

57 Age: Gender:

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Unit 2

SE

RIGHT TURN

PASSENGER CAR

F

NOT SPECIFIED NOT SPECIFIED

NOT SPECIFIED

Unit 3

08/01/2016 Page 3 of 7 MnCMAT 1.0.0

 Crash ID:
 133580083
 Date:
 11/21/2013
 Time:
 1633
 Sys:
 04-CSAH

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 07000060

Severity: PROPERTY DAMAGE

Road Type: NOT SPECIFIED

Road Char: NOT SPECIFIED

First Event: NOT SPECIFIED

To Junction: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Road Char: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Speed Limit: 40

Surf Cond: ICE/PACKED SNOW

Light Cond: DAYLIGHT

Diagram: REAR END

Officer:

Weather 1: SNOW Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STRAIGHT AHEAD

PASSENGER CAR

Age: 18
Gender: M

Veh Type:

Cond: NOT SPECIFIED

Cont Fact 1 NOT SPECIFIED

Cont Fact 2 NOT SPECIFIED

Unit 2

STOPPED TRAFFIC

PASSENGER CAR

20 F

Date: 04/09/2014

City: MANKATO

NOT SPECIFIED

NOT SPECIFIED

NOT SPECIFIED

Svs: 04-CSAH

Unit 3

Route: 07000060 001+00.650

001+00.649

Severity: PROPERTY DAMAGE

Road Type: 2 LANES UNDIV 2_WAY
Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Crash ID: 140990204

County: BLUE EARTH

Light Cond: DARK - STREET LIGHTS ON

Weather 1: CLEAR
Weather 2: CLEAR

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Time: 2201

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir: W

Veh Act: | START TRAFFIC

Veh Type: | PICKUP TRUCK

Age: 30
Gender: M

Cond: | NORMAL

Cont Fact 1 NOT SPECIFIED

Cont Fact 2 NOT SPECIFIED

Unit 2

SE

LEFT TURN

PICKUP TRUCK

20

М

UNDER THE INFLUENCE

IMPROPER LANE

FAIL TO YIELD ROW

Unit 3

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 24200140
 000+00.364

Severity:PROPERTY DAMAGEFirst Event:NOT SPECIFIEDRoad Type:NOT SPECIFIEDTo Junction:NOT SPECIFIEDRoad Char:NOT SPECIFIEDTraffic Device:STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 30

Surf Cond: DRY

Diagram: SIDESWIPE PASSING

Light Cond: DAYLIGHT

Officer:

Weather 1: CLEAR Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: S

Veh Type:

Veh Act: | STRAIGHT AHEAD

PASSENGER CAR

Age: 69
Gender: F

Cond: NOT SPECIFIED

Cont Fact 1 NOT SPECIFIED

Cont Fact 2 NOT SPECIFIED

Unit 2

LEFT TURN

Ν

PASSENGER CAR

22 M

NOT SPECIFIED

NOT SPECIFIED

Unit 3

 Crash ID:
 141130108
 Date:
 04/23/2014
 Time:
 1807
 Sys:
 04-CSAH

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 07000060

Severity: PROPERTY DAMAGE

Road Type: 2 LANES UNDIV 2_WAY

Road Char: UNKNOWN

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: UNKNOWN Light Cond: 99

Weather 1: UNKNOWN
Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 40
Diagram: REAR END

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir: W

Veh Act: | STOPPED TRAFFIC

Veh Type: | PICKUP TRUCK

Age: 26
Gender: M

Cond: | NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED

Unit 2

SLOWING TRAFFIC

PASSENGER CAR

21

NORMAL

DISTRACTION

NOT SPECIFIED

Unit 3

001+00.650

 Crash ID:
 152670051
 Date:
 08/25/2015
 Time:
 1602
 Sys:
 04-CSAH

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 07000060

Severity:PROPERTY DAMAGEFirst Event:NOT SPECIFIEDRoad Type:NOT SPECIFIEDTo Junction:NOT SPECIFIEDRoad Char:NOT SPECIFIEDTraffic Device:STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit:

Surf Cond: DRY Diagram: REAR END

Light Cond: DAYLIGHT Officer:

Weather 1: CLEAR Reliability: CONFIDENT
Weather 2: NOT SPECIFIED #of Vehicles: 2.00

Unit 1

Trav Dir: MC

Veh Act: | STOPPED TRAFFIC

Veh Type: | SPORT UNTILITY VEHICLE

Age: 44
Gender: F

Cond: NOT SPECIFIED

Cont Fact 1 NOT SPECIFIED

Cont Fact 2 NOT SPECIFIED

Unit 2

MC

PARKED

PASSENGER CAR

49

NOT SPECIFIED

NOT SPECIFIED

NOT SPECIFIED

Unit 3

001+00.650

001+00.649

 Crash ID:
 152710071
 Date:
 08/27/2015
 Time:
 1615
 Sys:
 04-CSAH

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 07000060

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED

Road Type: NOT SPECIFIED

Road Char: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: WET

Light Cond: DARK - STREET LIGHTS OFF

Weather 1: RAIN Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: | STOPPED TRAFFIC

Veh Type: | SPORT UNTILITY VEHICLE

NOT SPECIFIED

Age: 26

Gender: M

Cont Fact 2

Cont Fact 1 NOT SPECIFIED

NOT SPECIFIED

Unit 2

STRAIGHT AHEAD
PASSENGER CAR

Speed Limit: 40

Officer:

Diagram: REAR END

22 F

NOT SPECIFIED

NOT SPECIFIED

NOT SPECIFIED

Unit 3

08/01/2016 MnCMAT 1.0.0 Page 6 of 7

 Crash ID:
 152740192
 Date:
 10/01/2015
 Time:
 1820
 Sys:
 04-CSAH

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 07000060

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 4_6 LANES UNDIV 2_WAY

To Junction: 4-LEGGED INTERSECTION

Road Char: STRAIGHT AND LEVEL

Traffic Device: STOP SIGN 4-WAY

 Crash Type:
 COLL W/MV IN TRANSPORT
 Speed Limit:
 40

 Surf Cond:
 DRY
 Diagram:
 OTHER

 Light Cond:
 DAYLIGHT
 Officer:

Weather 1: CLEAR Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 3.00

Unit 1

Trav Dir: | W

Veh Act: | STRAIGHT AHEAD

Veh Type: | PASSENGER CAR

Age: 19
Gender: M

Cond: NORMAL

Cont Fact 1 DISREGARD TRAFFIC DEVICE

Cont Fact 2 | OTHER VEHICLE DEFECT

Unit 2

N

STRAIGHT AHEAD

PASSENGER CAR

21 F

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

S

STOPPED TRAFFIC

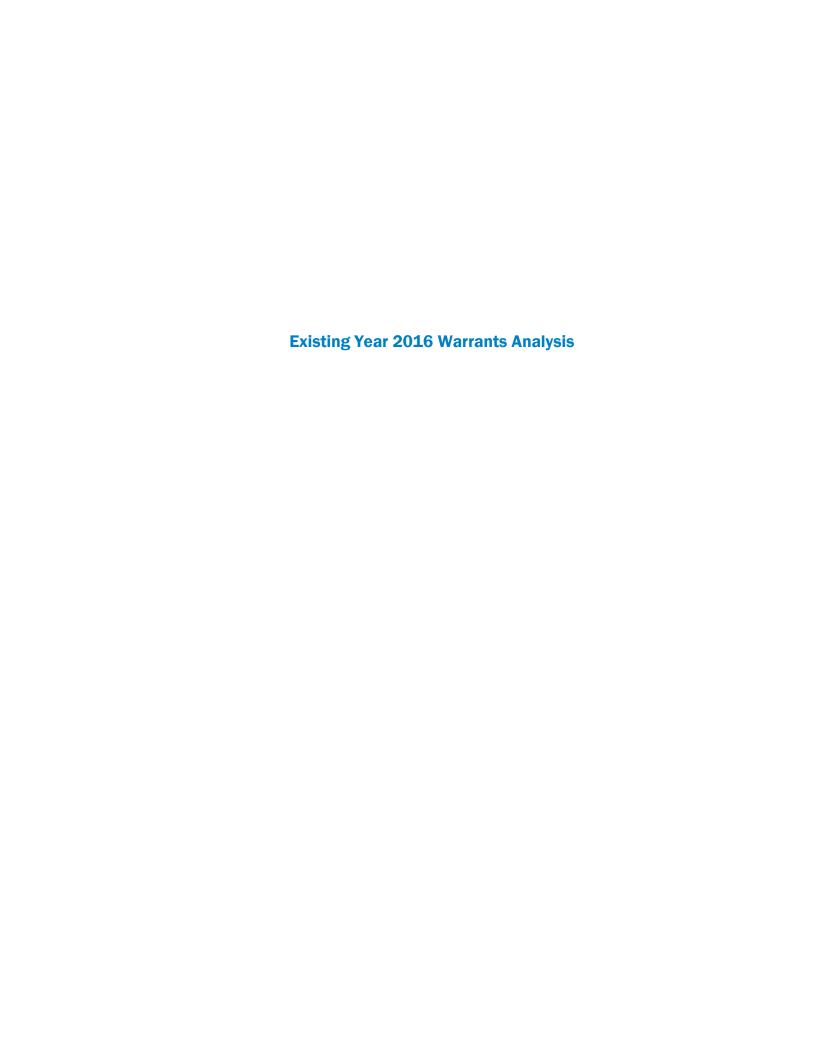
001+00.650

VAN OR MINIVAN

M

NORMAL

SKIDDING


NOT SPECIFIED

Selection Filter:

WORK AREA: Statewide - FILTER: CRASH_YEAR('2011','2012','2013','2014','2015'), TRAFFIC_CONTROL_DEVICE_CODE('03') - SPATIAL FILTER APPLIED

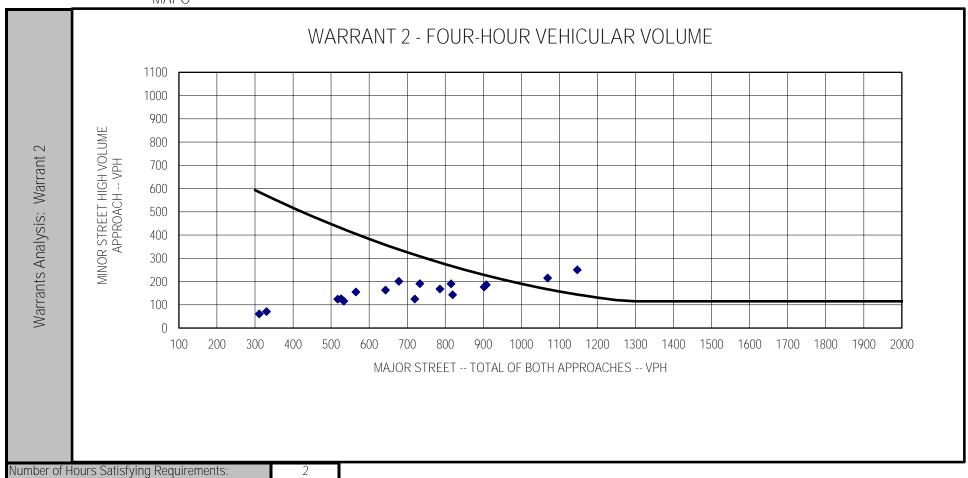
Analyst:	Notes:

Luke James

WARRANTS ANALYSIS Existing Year 2016

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO

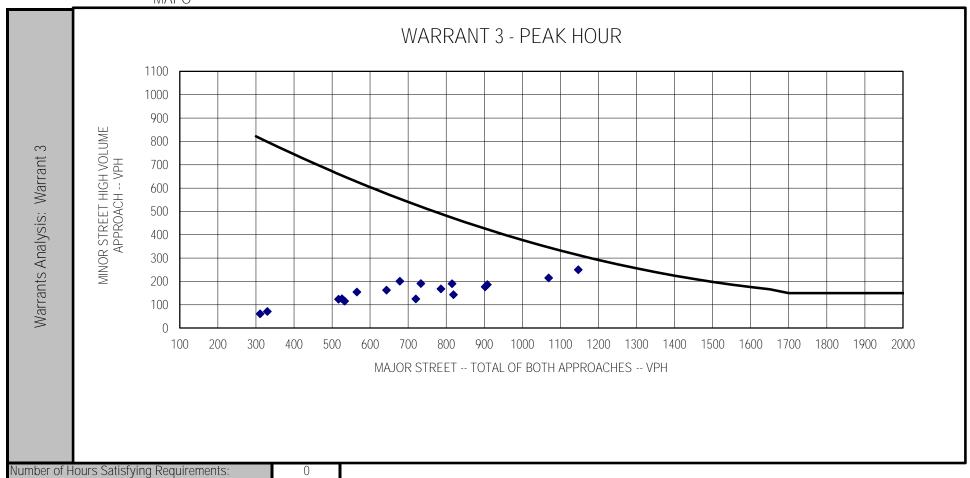
Background Information	Location: MAPO	Speed (mph)	Lanes	Approach
	Date: 9/28/2016	40	2 or more	Major Approach 1: Eastbound Stadium Road (CSAH 60)
	Analysis Prepared By: Luke James	40	2 or more	Major Approach 3: Westbound Stadium Road (CSAH 60)
	Population Less than 10,000:	30	2 or more	Minor Approach 2: Northbound Pohl Road
	Seventy Percent Factor Used: No	30	2 or more	Minor Approach 4: Southbound Pohl Road


		Major Major		Total Warrant		ınt Met	Minor	Minor	Largest	Warrant Met		Met Same Hours		Combination		MWSA (C)		
	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	200	100	Condition A	Condition B	А	В	300	200	
Warrants Analysis: Warrants 1A, 1B and 1C	6 - 7 AM	176	154	330			71	55	71							Χ		
	7 - 8 AM	343	335	678	Χ		201	164	201	Χ	Χ	Χ		Χ		Χ	Χ	
	8 - 9 AM	294	271	565			155	134	155		Χ					Χ	Χ	
	9 - 10 AM	218	308	526			126	106	126		Χ					Χ	Χ	
	10 - 11 AM	255	262	517			124	115	124		Χ					Χ	Χ	
	11 - 12 AM	324	319	643	Χ		163	146	163		Χ			Χ		Χ	Χ	
	12 - 1 PM	379	354	733	Χ		191	156	191		Χ			Χ	Χ	Χ	Χ	
	1 - 2 PM	410	376	786	Χ		168	151	168		Χ			Χ	Χ	Χ	Χ	
	2 - 3 PM	400	415	815	Χ		189	190	190		Χ			Χ	Χ	Χ	Χ	
	3 - 4 PM	439	469	908	Χ	Χ	177	186	186		Χ		Χ	Χ	Χ	Χ	Χ	
	4 - 5 PM	515	554	1069	Χ	Χ	213	215	215	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
	5 - 6 PM	517	630	1147	Χ	Χ	194	250	250	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
A (0	6 - 7 PM	415	487	902	X	Χ	151	177	177		X		Χ	Χ	X	X	X	
rrants	7 - 8 PM	419	400	819	Χ		122	143	143		Χ				Χ	Χ	Χ	
	8 - 9 PM	335	385	720	Χ		85	125	125		X				Χ	X	Χ	
N N	9 - 10 PM	228	305	533			69	116	116		Χ					X		
	10 - 11 PM	141	170	311			39	61	61							Χ		
	Western Description											3	4	,	9 9 14			
Warrant Summary	Warrant and Description					Hours Met Hours			Require	ed	Met/Not Met							
	Warrant 1A: Minimum Vehicular Volume					3			8		Not Met							
	Warrant 1B: Interruption of Continuous Traffic				4		ŏ o		Not Met									
	Warrant 1C: Combination of Warrants					9		8		Met - Warrant 1C Satisfied								
Su S	Warrant 2: Four-Hour Vehicular Volume					2		4			Not Met							
	Warrant 3B: Peak Hour					0				Not Met								
	MWSA (C): Multiway Stop Applications Condition C					14			8 Met - Multiwa			vay Stop Applications						

WARRANTS ANALYSIS

Existing Year 2016

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO


1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS Notes: THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

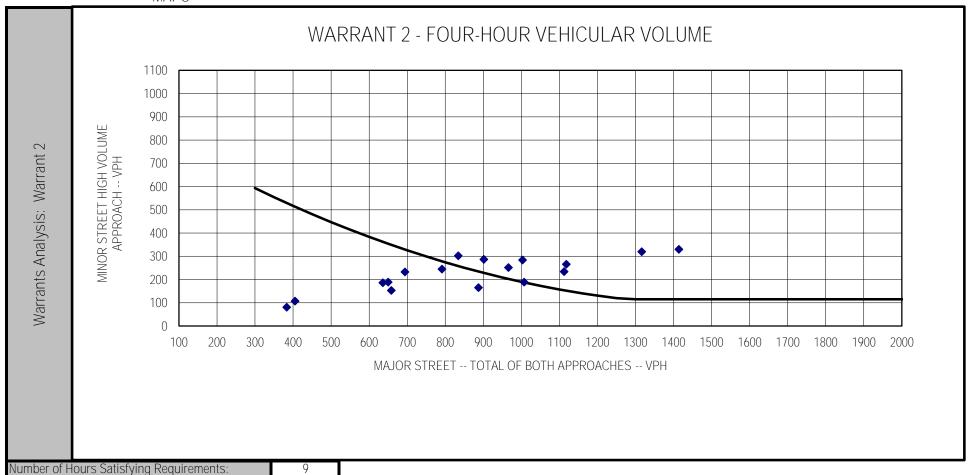
WARRANTS ANALYSIS

Existing Year 2016

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO

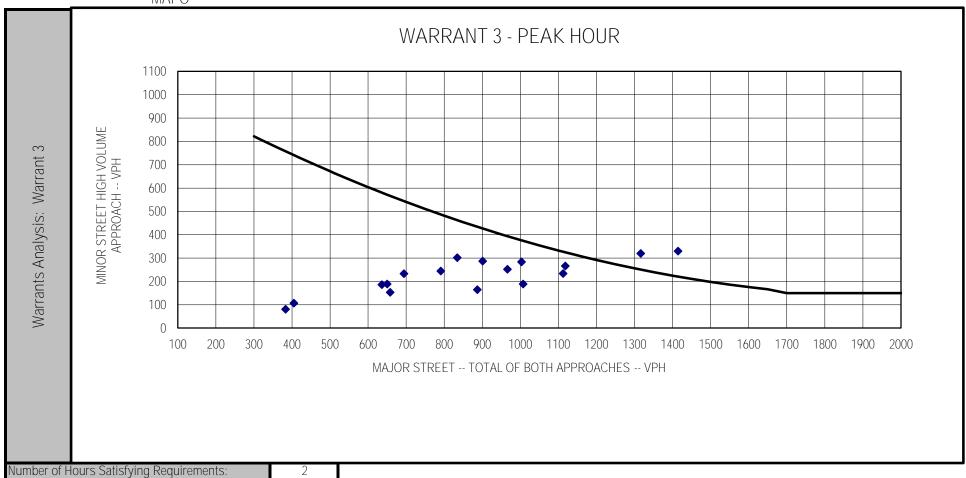
Notes:

1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.


WARRANTS ANALYSIS

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO

br no	Location: MAPO	Speed (mph)	Lanes	Approach
roun	Date: 9/28/2016	40	2 or more	Major Approach 1: Eastbound Stadium Road (CSAH 60)
gra	Analysis Prepared By: Luke James	40	2 or more	Major Approach 3: Westbound Stadium Road (CSAH 60)
Backgr	Population Less than 10,000: No	30	2 or more	Minor Approach 2: Northbound Pohl Road
Ba	Seventy Percent Factor Used: No	30	2 or more	Minor Approach 4: Southbound Pohl Road


		Major	Major	Total	Warra	nt Met	Minor	Minor	Largest	Warra	nt Met	Met Sam	ne Hours	Comb	ination	MWS	5A (C)
	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	200	100	Condition A	Condition B	А	В	300	200
7	6 - 7 AM	211	194	405			107	73	107		Χ					Χ	
and	7 - 8 AM	412	422	834	Χ		302	216	302	Χ	Χ	X		Χ	Χ	Χ	Χ
Ω	8 - 9 AM	353	341	694	Χ		233	177	233	Χ	Χ	Χ		Χ		Χ	Χ
<u> </u>	9 - 10 AM	262	388	650	Χ		189	140	189		Χ			Χ		Χ	Χ
4 ∠	10 - 11 AM	306	330	636	Χ		186	152	186		Χ			Χ		Χ	Χ
Its	11 - 12 AM	389	402	791	Χ		245	193	245	Χ	Χ	X		Χ	Χ	Χ	Χ
Warrants	12 - 1 PM	455	446	901	Χ	Χ	287	206	287	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
arı/arı	1 - 2 PM	492	474	966	Χ	Χ	252	199	252	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
*	2 - 3 PM	480	523	1003	Χ	Χ	284	251	284	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
<u></u>	3 - 4 PM	527	591	1118	Χ	Χ	266	246	266	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Warrants Analysis:	4 - 5 PM	618	698	1316	Χ	Χ	320	284	320	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
na	5 - 6 PM	620	794	1414	Χ	Χ	291	330	330	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ
\forall	6 - 7 PM	498	614	1112	Χ	Χ	227	234	234	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ
ınts	7 - 8 PM	503	504	1007	Χ	Χ	183	189	189		Χ		Χ	Χ	Χ	Χ	Χ
<u> </u>	8 - 9 PM	402	485	887	Χ		128	165	165		Χ			Χ	Χ	Χ	Χ
Na	9 - 10 PM	274	384	658	Χ		104	153	153		Χ					Χ	Χ
	10 - 11 PM	169	214	383			59	81	81				_			Χ	
												10	8	14	11	1	5
			and Descript				Hours		Hours	Require	ed			et/Not Me			
+ >	Warrant 1A:	Minimum Veh					1(8			Met - War				
Warrant	Warrant 1B:	Interruption o		raffic			8	_		8			Met - War				
arr							1			8			Met - War				
N S	Warrant 2:		hicular Volum	е			9			4			Met - Wa				
		Peak Hour	. A P P	0			2	_		1			Met - War				
	MWSA (C):	Multiway Stop	o Applications	Conditi	on C		15)		8			Met - Multiwa	ay Stop A	Applicatio	ns	

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO

Notes: 1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Stadium Road (CSAH 60) at Pohl Road Intersection Control Evaluation Studies MAPO

Notes: 1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Existing Year 2016 Detailed Operational Analysis

All-Way Stop Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.1	0.1	0.1	0.3
Denied Del/Veh (s)	8.0	1.1	0.9	1.2	1.0
Total Delay (hr)	1.4	1.0	0.5	0.3	3.2
Total Del/Veh (s)	13.3	10.0	7.2	6.9	10.0
Stop Delay (hr)	0.7	0.4	0.3	0.2	1.7
Stop Del/Veh (s)	6.9	4.5	4.9	4.5	5.4
Total Stops	382	357	236	172	1147
Stop/Veh	0.99	1.00	0.99	1.00	0.99

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	54	187	55	116	50	90	58	76	
Average Queue (ft)	24	76	31	58	25	50	27	40	
95th Queue (ft)	49	134	50	95	51	80	51	62	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)		1				0		0	
Queuing Penalty (veh)		0				0		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.3	0.0	0.0	0.5
Denied Del/Veh (s)	1.2	1.4	8.0	0.6	1.1
Total Delay (hr)	2.8	3.9	0.5	0.6	7.9
Total Del/Veh (s)	18.2	21.4	8.9	9.5	17.0
Stop Delay (hr)	1.8	2.7	0.4	0.5	5.4
Stop Del/Veh (s)	11.6	14.9	6.7	7.3	11.7
Total Stops	555	650	206	238	1649
Stop/Veh	0.99	0.99	0.99	0.99	0.99

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	168	260	188	311	62	106	46	124
Average Queue (ft)	46	114	50	141	24	52	17	61
95th Queue (ft)	107	208	116	259	53	86	45	99
Link Distance (ft)		966		966		966		966
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	160		250		100		120	
Storage Blk Time (%)		5		3		0		0
Queuing Penalty (veh)		6		5		0		0

Existing Year 2016 Detailed Operational Analysis

Traffic Signal Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.1	0.1	0.1	0.3
Denied Del/Veh (s)	0.8	1.1	0.8	1.1	0.9
Total Delay (hr)	1.1	1.1	0.6	0.5	3.3
Total Del/Veh (s)	10.4	10.4	9.8	10.6	10.3
Stop Delay (hr)	0.6	0.7	0.5	0.4	2.2
Stop Del/Veh (s)	5.8	6.6	7.6	8.5	6.8
Total Stops	178	183	154	117	632
Stop/Veh	0.47	0.50	0.66	0.66	0.55

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	64	172	93	141	66	118	77	98	
Average Queue (ft)	24	73	38	63	25	55	30	43	
95th Queue (ft)	57	134	75	116	56	95	64	81	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)		0			0	1	0	0	
Queuing Penalty (veh)		0			0	0	0	0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.3	0.0	0.0	0.5
Denied Del/Veh (s)	1.2	1.4	0.8	0.6	1.2
Total Delay (hr)	3.0	3.2	0.9	1.1	8.3
Total Del/Veh (s)	19.0	17.5	15.7	16.1	17.6
Stop Delay (hr)	1.9	2.0	8.0	0.9	5.7
Stop Del/Veh (s)	12.2	10.9	13.3	13.4	12.0
Total Stops	370	413	156	184	1123
Stop/Veh	0.65	0.62	0.73	0.75	0.66

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	234	342	158	308	66	146	84	175	
Average Queue (ft)	64	151	65	147	25	67	20	79	
95th Queue (ft)	146	279	125	257	59	117	59	137	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)	0	7		1		3		2	
Queuing Penalty (veh)	0	8		2		1		1	

Existing Year 2016 Detailed Operational Analysis

Roundabout Control (HCS)

				ROL	JNDABO	UT REP	ORT									
General Information						Site Int	form	otio	n							
Analyst Luke J	Consultii 16	ng Grou	p, Inc.			Intersection Stadium Road at Pohl Road E/W Street Name Stadium Road N/S Street Name Pohl Road Analysis Year 2016 Project ID 9243										
Project Description:																
Volume Adjustment an	d Site	Charac	cteristic	s												
		EE			W					NB			SB			
	L	Т		J L	T	R	U	L		R	U	L	T	R	U	
Number of Lanes (N)	0	1	0	0	1	0		0	1	0		0	1	0	<u> </u>	
Lane Assignment		A/	LTR		NI-	LTF	₹				rr -		NI = =		TR	
Right-Turn Bypass		Non	<u>e</u>			one 1				lone 1		None				
Conflicting Lanes Volume (V), veh/h	40	350	30 (75	240	45	0	40	70	125	0	45	60 T	60	0	
Heavy Veh. Adj. (f _{HV}), %	2	2		2 2	2	2	2	2	_	2	2	2	2	2	2	
Pedestrians Crossing					(l	_			0				_		
Critical and Follow-Up	Heady		iustmen	<u>t</u>												
Синон ини и сиси ор			EB	<u>*</u>		WB				NB			SE	}		
		Left	Right	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left			Bypass	
Critical Headway (sec)		5.1929		5.1929	5.1929	5.1929	+	_	5.1929	5.1929			_	\rightarrow	5.1929	
Follow-Up Headway (sec)		3.1858	3.1858		3.1858	3.1858			3.1858	3.1858		3.185	8 3.18	58		
Flow Computations					•	•										
			EB			WB				NB			SE	3		
		Left	Right	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	Rig	ht	Bypass	
Circulating Flow (V _c), pc/h			183		153					444 158	362					
Exiting Flow (V _{ex}), pc/h			530		347					1	16					
Entry Flow (V _e), pc/h			428			367		_		240			16	_		
Entry Volume veh/h			420			360				235			16	•		
Capacity and v/c Ratios	<u> </u>	1	EB			WB				NB		1	SE	,		
		Left	Right	Bypass	Left	Right	Вура	200	Left	Right	Bypass	Left			Bypas	
Capacity (c _{PCE}), pc/h		LCIT	940	Буразз	Lon	970	Бурс	133	LCIT	725	Бураза	Lon	78	_	Бураз	
Capacity (c), veh/h			922			951		1		711			77	_		
v/c Ratio (X)			0.46			0.38				0.33			0.2	1		
Delay and Level of Serv	vice						<u> </u>					<u> </u>	<u> </u>			
-			EB			WB				NB			SE	3		
		Left	Right	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	Rig	ht	Bypass	
Lane Control Delay (d), s/ve	eh		9.4			8.0				9.2			7.0			
Lane LOS			Α			Α				Α			Α			
Lane 95% Queue			2.4			1.8				1.4			0.8	}		
Approach Delay, s/veh		9.40				7.96		_		9.20			7.0	0		
Approach LOS, s/veh			Α			Α				Α			Α			
Intersection Delay, s/veh								8.5								
Intersection LOS								Α	l							

				RUL	JNDABO	UI KEP	UKI								
General Information						Site Int	forma	tio	n						
Analyst Luke .	Consultii 16	ng Grou	Intersection Stadium Road at Pohl Road E/W Street Name Stadium Road N/S Street Name Pohl Road Analysis Year 2016 Project ID 9243												
Project Description:						,									
Volume Adjustment an	d Site	Chara	cteristic	s											
		E	3		V	/B				NB			SI	В	
	L	Т	R	U L	Т	R	U	L	Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0	0	1	0		0	1	0		0	1	0	
Lane Assignment			LTR			LTF	₹			Lī	TR			ı	LTR
Right-Turn Bypass		Nor	ne		None				N			No	ne		
Conflicting Lanes		1			·	1			_	1			1		
Volume (V), veh/h	120	395		0 160	1.00	45	0	35	+ **	110	0	25	75	140	_
Heavy Veh. Adj. (f _{HV}), %	2	2	2	2 2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing		0			(0				0			0)	
Critical and Follow-Up	Headu	vay Ad		it								1			
			EB	T_		WB	1_	_		NB	1_			SB	I_
0.1111		Left	Right	Bypass	 	Right	Вура	\rightarrow	Left	Right	Bypass	+	_	ght	Bypas
Critical Headway (sec)		5.1929		_	5.1929	5.1929	5.192	\rightarrow	5.1929	5.1929	5.1929		+	929	5.1929
Follow-Up Headway (sec) Flow Computations		3.1838	3.1858		3.1858	3.1858			3.1858	3.1858		3.185	5 3.1	858	
riow Computations		1	EB			WB		1		NB				SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left		ght	Bypass
Circulating Flow (V _c), pc/h		Lon	265	Буразо	Lon	219	Бура	-	LOIL	551	Бураза	Lon		43	Бураз
Exiting Flow (V _{ex}), pc/h			541				622		230			286			
Entry Flow (V _e), pc/h			571			653				209				45	
Entry Volume veh/h			560			640		1		205				40	
Capacity and v/c Ration	s			-	-		-					-	-!		ļ
· ·			EB			WB				NB			5	SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left	Ri	ght	Bypas
Capacity (c _{PCE}), pc/h			867			907				651			5:	94	
Capacity (c), veh/h			850			890				639			5	83	
v/c Ratio (X)			0.66			0.72				0.32			0.	41	
Delay and Level of Ser	vice														
			EB			WB				NB			5	SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left	Ri	ght	Bypas
Lane Control Delay (d), s/ve	eh		15.3			17.3		_		9.9		<u> </u>	12	2.5	
Lane LOS			С			С		_		Α				В	
Lane 95% Queue			5.1			6.4		\perp		1.4				.0	
Approach Delay, s/veh						17.27		_		9.87		<u> </u>		.49	
Approach LOS, s/veh			С			С		\perp		Α			ı	В	
Intersection Delay, s/veh								14.9							
Intersection LOS		1						В							

Existing Year 2016 Detailed Operational Analysis

Roundabout Control (RODEL)

RODEL				X
8:9:10	92	43 POHL STAD	IUM 2016 50 CL	9
E (m) 4 L' (m) 40 U (m) 3 RAD (m) 20 PHI (d) 30	.00 4.00 .00 40.00 4 .65 3.65 .00 20.00 2	4.00 4.00 10.00 40.00 3.65 3.65 10.00 20.00 10.00 30.00 15.00 45.00 0	TIME PER TIME SLI RESULTS TIME COS PLOW PER PLOW TYR	CE min 15 PERIOD min 15 75 T \$/hr 15.00 RIOD min 15 75
LEG NAME PCU SB POHL RD 1.0 EB STADIUM 1.0 NB POHL RD 1.0 WB STADIUM 1.0	2 30 305 2 125 70	exit 2nd etc 45 0 40 0 40 0 75 0	1.00 50 0.75 1 1.00 50 0.75 1 1.00 50 0.75 1	.125 0.75 15 45 75
		MODE 2		
CAPACITY v AVE DELAY mi MAX DELAY mi AVE QUEUE v MAX QUEUE v	eh 165 eh 997 ns 0.07 ns 0.09 eh 0 eh 0	375 235 1090 978 0.08 0.08 0.11 0.10 1 0	360 1106 0.08 0.10 0	AUDEL s 4.7 L 0 8 A UEH HRS 1.5 COST \$ 22.4
F1mode F2dire	ct F3peak (Ctr1F3rev F4	fact F6stats F8ecor	r F9prnt F10run Esc

RODEL										_ X
8:9:10		9:	243 PO	HL STAD	(UM 201)	6 50	CL			10
E (m) U (m)	4.00 40.00 3.6	0 40.00	4.00 40.00 3.65	4.00 40.00 3.65				ME PERI ME SLIC SULTS I	CE m:	in 90 in 15 in 15 75
RAD (m) PHI (d) DIA (m)	20.00 30.00 45.00	0 30.00 : 0 45.00 :	20.00 30.00 45.00	20.00 30.00 45.00			FL FL	ME COST OW PERI OW TYPI	OD m:	in 15 75 eh VEH
GRAD SEP		9 9	Ø	0			FL	OW PEAL	{ am/op/j	pm PM
LEG NAME SB POHL RD EB STADIUM NB POHL RD WB STADIUM	1.02 1.02	FLOWS (1st 140 75 45 395 110 60 45 435	exit 25 120 35 160	2nd etc 0 0 0 0	1 1 1	.00 .00 .00	50 50	0.75 1. 0.75 1. 0.75 1.	RATIO .125 0.75 .125 0.75 .125 0.75 .125 0.75	5 15 45 75 5 15 45 75
				MODE 2						
PLOW CAPACITY AUE DELAY MAX DELAY AUE QUEUE MAX QUEUE	veh veh mins mins veh veh	850 0.10 0.13 0	560 1047 0.12 0.17 1	205 898 0.09 0.11 0	640 1071 0.14 0.20 2 2				AUDEL L O UEH HI COST	S A
	irect		Ctr1F3			stat:	S	F8econ	F9prnt	F10run Esc

RODEL											_ _ ×
8:9:10		9	243 PO	HL STAD	IUM 20	16 85	CI	,			10
E (m)	4.00 40.00 3.65	4.00 40.00 3.65	4.00 40.00 3.65	4.00 40.00 3.65			TI		RIOD ICE PERI	mir mir OD mir	15
RAD (m)	20.00 30.00	20.00	20.00 30.00	20.00 30.00					ST	\$/hı mir	15.00
	45.00 0		45.00 0	45.00 0			FI FI	OW TY		cu/vel /op/pr	1 VEH
LEG NAME P SB POHL RD 1 EB STADIUM 1 NB POHL RD 1 WB STADIUM 1	.02 .02 .02 1	0WS (1st 60 60 30 305 125 70 45 240	45 40 40	2nd etc 0 0 0 0 0		1.00 1.00	85	0.75 0.75 0.75	1.125	0.75 0.75 0.75	15 45 75
				MODE 2			_				
MAX DELAY	veh veh mins mins	165 794 0.09 0.12	375 887 0.12 0.16	235 775 0.11 0.15	360 903 0.11 0.15				L	UDEL S O S EH HRS	A 2.1
AVE QUEUE MAX QUEUE	veh veh	0 0	1 1 Ctr1F3	0 1	1 1	Cotat		EQ. o.o.		OST S	30.8
F1mode F2di	rect i	3peak	GUFIF3	rev F4	fact F	6stat	. 8	F8eco	II FY	prnt	F10run Esc

RODEL											_ 🗆 ×
8:9:10		9	243 PO	HL STAD	IUM 201	L6 85	CI	,			11
E (m)	4.00 40.00	40.00	4.00 40.00	4.00 40.00				ME PI ME SI	I CE	mir mir	15
U (m) RAD (m) PHI (d)	3.65 20.00 30.00	0 20.00	3.65 20.00 30.00	3.65 20.00 30.00			TI	SULTS ME CO LOW PE	PERI OST ERIOD	OD mir \$/hi mir	15.00
DIA (m) GRAD SEP	45.00	45.00	45.00 0	45.00 0			FI FI	OW TY	PE p	cu/ve] /op/pr	n VEH
LEG NAME SB POHL RD EB STADIUM NB POHL RD WB STADIUM	1.02 1.02	PLOWS (1st 140 75 45 395 110 60 45 435	25 120 35	2nd etc 0 0 0 0	1 1		85	0.75 0.75	1.125 1.125 1.125	0.75	15 45 75 15 45 75
				MODE 2			_				
PLOW CAPACITY AVE DELAY MAX DELAY AVE QUEUE MAX QUEUE	veh veh mins mins veh veh	240 648 0.15 0.21 1	560 844 0.22 0.33 2 2	205 695 0.12 0.16 0	640 868 0.28 0.44 3				L	UDEL S O S EH HRS OST S	B
	lirect	F3peak	Ctr1F3	rev F4		óstat	S	F8ecc	n F9	prnt	F10run Esc

Forecasted Year 2036 Detailed Operational Analysis

All-Way Stop Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.1	0.1	0.1	0.4
Denied Del/Veh (s)	0.9	1.2	0.9	1.1	1.0
Total Delay (hr)	4.1	1.8	1.2	0.6	7.7
Total Del/Veh (s)	32.1	14.5	12.0	9.0	18.5
Stop Delay (hr)	3.3	1.1	1.0	0.4	5.8
Stop Del/Veh (s)	26.1	8.6	9.6	6.5	13.9
Total Stops	458	450	354	222	1484
Stop/Veh	1.00	0.99	0.99	1.00	1.00

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	200	424	67	200	105	185	68	97	
Average Queue (ft)	49	150	35	83	33	77	31	50	
95th Queue (ft)	165	360	55	153	67	137	57	81	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)		18		0	0	5		0	
Queuing Penalty (veh)		10		0	0	3		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	12.5	57.8	0.1	0.1	70.4
Denied Del/Veh (s)	67.9	261.5	0.9	0.6	121.7
Total Delay (hr)	28.7	36.5	1.1	1.4	67.7
Total Del/Veh (s)	156.7	188.3	12.7	15.8	122.5
Stop Delay (hr)	29.6	38.3	0.9	1.2	70.0
Stop Del/Veh (s)	161.6	197.5	10.3	13.5	126.6
Total Stops	471	284	308	316	1379
Stop/Veh	0.71	0.41	0.99	0.99	0.69

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	260	983	350	1025	72	162	56	174	
Average Queue (ft)	236	769	343	961	31	73	22	87	
95th Queue (ft)	348	1227	416	1138	60	124	51	149	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)		45		85					
Queuing Penalty (veh)		0		0					
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)	0	93		100	0	4		5	
Queuing Penalty (veh)	0	130		199	0	2		2	

Forecasted Year 2036 Detailed Operational Analysis

Traffic Signal Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.2	0.1	0.1	0.4
Denied Del/Veh (s)	0.8	1.2	0.9	1.1	1.0
Total Delay (hr)	1.8	1.9	1.2	8.0	5.7
Total Del/Veh (s)	14.2	14.9	12.0	12.3	13.6
Stop Delay (hr)	1.1	1.3	0.9	0.6	3.9
Stop Del/Veh (s)	8.5	10.1	9.1	10.0	9.4
Total Stops	238	264	236	150	888
Stop/Veh	0.53	0.57	0.65	0.66	0.59

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	103	218	135	204	75	196	76	112	
Average Queue (ft)	32	103	56	89	32	84	36	52	
95th Queue (ft)	73	178	109	161	67	151	68	97	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)	0	1		0	0	4		0	
Queuing Penalty (veh)	0	1		0	0	3		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.3	0.1	0.1	0.7
Denied Del/Veh (s)	1.4	1.6	0.9	0.7	1.3
Total Delay (hr)	5.9	7.2	1.7	1.7	16.5
Total Del/Veh (s)	31.7	31.8	19.3	19.4	28.1
Stop Delay (hr)	4.1	4.9	1.4	1.4	11.9
Stop Del/Veh (s)	21.9	21.7	16.2	16.3	20.2
Total Stops	551	667	228	224	1670
Stop/Veh	0.82	0.82	0.72	0.72	0.79

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	260	478	334	470	91	204	80	207	
Average Queue (ft)	89	235	116	256	38	98	28	103	
95th Queue (ft)	207	460	260	437	75	171	66	175	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)		0							
Queuing Penalty (veh)		0							
Storage Bay Dist (ft)	160		250		100		120		
Storage Blk Time (%)	0	20	0	11	0	8	0	7	
Queuing Penalty (veh)	0	28	1	23	0	5	0	2	

Forecasted Year 2036 Detailed Operational Analysis

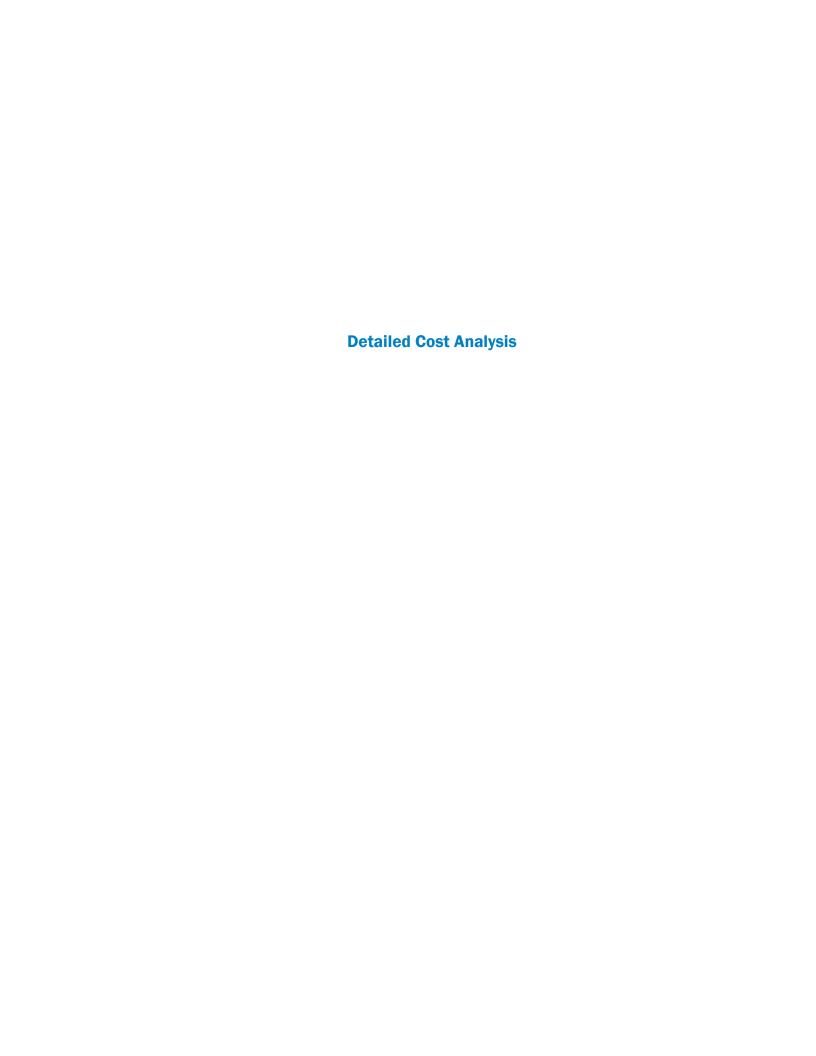
Roundabout Control (HCS)

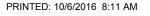
					ROL	JNDABO	UT REP	ORT								
							I									
Agency or Co. SF Date Performed 8/5 Time Period A.I.	Analyst Luke James Agency or Co. SRF Consulting Group, Inc. Date Performed 8/5/2016 Time Period A.M. Peak Peak Hour Factor 1.00						Site Information Intersection Stadium Road at Pohl Road E/W Street Name Stadium Road N/S Street Name Pohl Road Analysis Year 2036 Project ID 9243									
Project Description:																
Volume Adjustment	and Sit	e Chara	cteris	stics	;											
		E	В			V	/B				NB				SB	
	L	Т	R	U	_	Т	R	U	L	_	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		C) 1	0		0	1	0	
Lane Assignment			L	TR			LTF	?			L7	R				LTR
Right-Turn Bypass		No	ne			No	ne			N	lone			1	None	
Conflicting Lanes		1			_		1			-	1				1	-
Volume (V), veh/h	50	370	35	0		300	55	0	6			0	60	80		
Heavy Veh. Adj. (f _{HV}), S	% 2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2
Pedestrians Crossing		()			()				0				0	
Critical and Follow-	Up Head	lway Ac	ljustn	nent	•					1			ı			
			E		_		WB	T_			NB	I_	<u> </u>		SB	T_
		Left	Rig	_	Bypass		Right	Вур				Bypass		-+	Right	Bypass
Critical Headway (sec)		5.192 3.185	-	-	5.1929	5.1929	5.1929	5.19	929	5.1929		5.1929		-		5.1929
	Follow-Up Headway (sec)		3.18	358		3.1858	3.1858			3.1858	3.1858		3.18	58 3	3.1858	
Flow Computations		1				1	NA/D			I	ND		I		O.D.	
		1 - 6	E		D	1 - 61	WB	Ī		1 - 64	NB	D		.	SB	Ī
Circulating Flow (V _c), po	c/h	Left	Rig		Bypass	Left	Right 219	Вур	ass	Left	Right 489	Bypass	Le	π	Right 464	Bypass
Exiting Flow (V _{ex}), pc/h			632				449				214				214	
Entry Flow (V _e), pc/h			464				459			362			+ 1		224	
Entry Volume veh/h		+	45	-+			450				355			+	220	
Capacity and v/c Ra	tins		70	,5			750				333	ļ	ļ		220	<u> </u>
Capacity and vic Na	1103		E	<u></u> В			WB				NB				SB	
		Left			Bypass	Left	Right	Вур	ass	Left		Bypass	Le	ft T	Right	Bypass
Capacity (c _{PCE}), pc/h			88	-	71		907	71			693	7,1			710	71
Capacity (c), veh/h			87	'2			890				679				697	
v/c Ratio (X)			0.5	_			0.51				0.52				0.32	
Delay and Level of S	Service												<u> </u>			<u>. </u>
-			Е	B			WB				NB				SB	
		Left	Rig	ght	Bypass	Left	Right	Вур	ass	Left	Right	Bypass	Le	ft	Right	Bypass
Lane Control Delay (d),	s/veh	1	11			<u> </u>	10.6				13.6			\top	9.1	
Lane LOS			E	3			В				В				Α	
Lane 95% Queue			3.	1			2.9				3.1				1.3	
Approach Delay, s/veh			11.	15			10.64	•	13.57			•	9.10			
Approach LOS, s/veh			Е	3			В			В				Α		
Intersection Delay, s/ve	h								11.	.27						
Intersection LOS								E	3							

Generated: 8/5/2016 2:54 PM

				RUL	JNDABO	OI KEP	UKI								
General Information						Site Int	forma	tior	າ						
Analyst Luke James Agency or Co. SRF Consulting Group, Inc. Date Performed 8/5/2016 Time Period P.M. Peak Peak Hour Factor 1.00					Site Information Intersection Stadium Road at Pohl Road E/W Street Name Stadium Road N/S Street Name Pohl Road Analysis Year 2036 Project ID 9243										
Project Description:						,									
Volume Adjustment an	d Site	Chara	cteristic	s											
		E	3		V	/B				NB			S	В	
	L	Т	R	U L	Т	R	U	L	Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0	0	1	0		0	1	0		0	1	0	
Lane Assignment			LTR			LTF	?			Lī	TR				LTR
Right-Turn Bypass		Nor	ne			ne			N	lone				ne	
Conflicting Lanes	4.40	1				1 	_			1		2-		1	
Volume (V), veh/h Heavy Veh. Adj. (f _{HV}), %	140	475		0 200 2 2	545	55 2	0	55		165 2	0	35 2	100	185 2	
Pedestrians Crossing	2	2 0	2	2 2			2	2	2	0	2	2	2		2
Critical and Follow-Up	Hoadii		iuetma-	<u> </u>)				U)	
Critical and Follow-op	пеаии	ay Au	EB	ıı		WB		Т		NB		1		SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left		ight	Bypas
Critical Headway (sec)		5.1929		+	5.1929	5.1929	5.192	-	5.1929	5.1929	5.1929	+	_	1929	5.1929
Follow-Up Headway (sec)			3.1858	_	3.1858	3.1858		-		3.1858		3.185	-	1858	
Flow Computations				-	-	-									
•			EB			WB				NB			;	SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left	R	ight	Bypas
Circulating Flow (V _c), pc/h			342			291				663			8	316	
Exiting Flow (V _{ex}), pc/h			689			801				291			3	857	
Entry Flow (V _e), pc/h			678			816		_		316			3	26	
Entry Volume veh/h			665			800				310			3	20	
Capacity and v/c Ration	s	1						_				1			
			EB	T_		WB	T_	_		NB	I_			SB	I_
Canacity (a) no/h		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left	_	ight	Bypas
Capacity (c _{PCE}), pc/h			803 787	-		845 828		+		582				90	
Capacity (<i>c</i>), veh/h v/c Ratio (X)			0.84			0.97		+		571 0.54			_	.65	
Delay and Level of Serv	vico		0.04			0.97				0.54			1 0	.00	
Delay and Level of Serv	vice		EB			WB		Т		NB				SB	
		Left	Right	Bypass	Left	Right	Вура	ss	Left	Right	Bypass	Left		ight	Bypas
Lane Control Delay (d), s/ve	eh	-511	28.2	- 7 5 400		45.7	_,,,,,	+		16.2	_ , , , , , ,		_	3.4	_ , , , , , ,
Lane LOS			D	<u> </u>		E		\dagger		С		1	-	C	
Lane 95% Queue			9.9			15.7		\top		3.2			-	1.6	
Approach Delay, s/veh			28.25	-		45.71	-	\top		16.24		1		3.35	
Approach LOS, s/veh			D			E		\top		С				С	
Intersection Delay, s/veh								32.3	39						
Intersection LOS	D														

Forecasted Year 2036 Detailed Operational Analysis


Roundabout Control (RODEL)


RODEL				_ U X
8:9:10	9243 PC	OHL STADIUM 2036 50	CL	10
E (m) 4. L' (m) 40. U (m) 3. RAD (m) 20. PHI (d) 30. DIA (m) 45. GRAD SEP	00 4.00 4.00 00 40.00 40.00 65 3.65 3.65 00 20.00 20.00 00 30.00 30.00	4.00 40.00 3.65 20.00 30.00 45.00	TIME PERIOD min TIME SLICE min RESULTS PERIOD min TIME COST \$/hr FLOW PERIOD min FLOW TYPE pcu/veh FLOW PEAK am/op/pm	90 15 15 75 15.00 15 75 VEH
LEG NAME PCU SB POHL RD 1.02 EB STADIUM 1.02 NB POHL RD 1.02 WB STADIUM 1.02	80 80 60 35 370 50 190 105 60	9 1.00 9 1.00 9 1.00 9 1.00	50 0.75 1.125 0.75 50 0.75 1.125 0.75	15 45 75 15 45 75
		MODE 2		
FLOW ve CAPACITY ve AUE DELAY min MAX DELAY min AUE QUEUE ve MAX QUEUE ve	h 943 1060 s 0.08 0.10 s 0.11 0.13 h 0 1	355 450 930 1071 0.10 0.10 0.14 0.13 1 1 1 1	AUDEL S L O S UEH HRS COST \$	5.7 A 2.4 35.4
F1mode F2direc	t F3peak Ctr1F3	Brev F4fact F6stat:	s F8econ F9prnt 1	F10run Esc

RODEL			
8:9:10	9243	POHL STADIUM 2036 50	0 CL 11
E (m) 4. L' (m) 40.	.00 4.00 4. .00 40.00 40. .65 3.65 3. .00 20.00 20. .00 30.00 30.	00 4.00 00 40.00 65 3.65 00 20.00 00 30.00	TIME PERIOD min 90 TIME SLICE min 15 RESULTS PERIOD min 15 75 TIME COST \$/hr 15.00 FLOW PERIOD min 15 75 FLOW TYPE pcu/veh VEH FLOW PEAK am/op/pm PM
LEG NAME SB POHL RD 1.02 EB STADIUM 1.02 NB POHL RD 1.02 WB STADIUM 1.02	2 185 100 2 50 475 1 2 165 90	40 0 1.00 55 0 1.00	CL PLOW RATIO FLOW TIME 50 0.75 1.125 0.75 50 0.75 1.125 0.75 50 0.75 1.125 0.75 50 0.75 1.125 0.75 50 0.75 1.125 0.75
		MODE 2	
FLOW ve CAPACITY ve AVE DELAY min MAX DELAY min AVE QUEUE ve MAX QUEUE ve	ch 760 10 is 0.14 0. is 0.20 0. ch 1	65 310 800 107 840 1034 18 0.11 0.28 27 0.16 0.48 2 1 4 3 1 6	AUDEL s 12.2 L 0 S B UEH HRS 7.1 COST \$ 106.1
F1mode F2dired	t F3peak Ctr	1F3rev F4fact F6stat	ts F8econ F9prnt F10run Es

RODEL				×
10:10:16		9243 POHL STAD	IUM 2036 85 CL	11
E (m) L' (m) 4 U (m) RAD (m) 2 PHI (d) 3	4.00 4.00 10.00 40.00 3.65 3.65 10.00 20.00 10.00 30.00 15.00 45.00	4.00 4.00 40.00 40.00 3.65 3.65 20.00 20.00 30.00 30.00 45.00 45.00	TIME PER TIME SLI RESULTS TIME COS FLOW PER FLOW TYP	CE min 15 PERIOD min 15 75 I \$/hr 15.00 IOD min 15 75
LEG NAME PC SB POHL RD 1. EB STADIUM 1. NB POHL RD 1. WB STADIUM 1.	.02 35 37 .02 190 10	0 60 0 0 50 0 5 60 0 0 95 0	1.00 85 0.75 1 1.00 85 0.75 1 1.00 85 0.75 1	.125 0.75 15 45 75
		MODE 2		
CAPACITY AUE DELAY m MAX DELAY m AUE QUEUE MAX QUEUE	veh 220 veh 740 nins 0.11 nins 0.15 veh 0 veh 1	455 355 857 727 0.15 0.16 0.21 0.23 1 1 1 1	450 868 0.14 0.20 1 1	AUDEL s 8.6 L 0 S A UEH HRS 3.6 COST \$ 53.3
F1mode F2dir	ect F3peak	CtrlF3rev F4	fact F6stats F8econ	F9prnt F10run Esc

RODEL									_
10:10:16		9	243 PO	HL STAD	IUM 2036 (35 CL			12
E (m) L' (m)	4.00 40.00	0 40.00	4.00 40.00	4.00 40.00			ME PERIO ME SLICE	i min	15
U (m) RAD (m)	3.69 20.00		3.65 20.00	3.65 20.00		RE T I	SULTS PE ME COST	RIOD min S/hr	
PHI (d) DIA (m)	30.00 45.00	0 30.00	30.00 45.00	30.00		FL	OW PERIC		15 75
GRAD SEP		0 45.00 0 0	99.68 0	45.00 0		FL	OW TYPE OW PEAK	pcu/veł am/op/pm	VEH PM
LEG NAME SB POHL RD EB STADIUM NB POHL RD	1.02	FLOWS (1st 185 100 50 475 165 90	35 140	2nd etc 0 0 0	1.0	85 85	0.75 1.1 $0.75 1.1$		15 45 75
WB STADIUM		55 545	200	Ø				25 0.75	
				MODE 2					
FLOW CAPACITY AUE DELAY	veh veh mins	320 564 0.24	665 806 0.47	310 638 0.18	800 831 1.55			AUDEL s	
MAX DELAY AVE QUEUE	mins veh	0.36 1	0.85 5	$0.\overline{27} \\ 1$	3.14			UEH HRS	28.2 423.2
MAX QUEUE	veh	2	9 Ctr1F3	1 F4	43		F0	Elman	Et Gauss Face
F1mode F2d	irect	F3peak	GUPIFS	rev F4:	fact F6sta	its .	F8econ	F9prnt	F10run Esc

Concept Cost Estimate (based upon 2016 bid price information) Prepared By: SRF Consulting Group, Inc., Date 10/2016

Consuming Group, Inc. 1	• •	- 1	J ,	
			Stadium Road a	at Pohl Road
ITEM DESCRIPTION	UNIT	UNIT PRICE	EST. QUANTITY	EST. AMOUNT
PAVING AND GRADING COSTS	I			
GrP 1 IExcavation - common & subgrade	cu. vd.	\$7.00	4.900	\$34.300
GrP 2 IGranular Subgrade (CV)	cu. yd.	\$14.00	2.900	\$40,600
	1) sq. yd. 1) sa. yd.	\$32.00 \$40.00	5,870 600	\$187,840 \$24,000
GrP 5 Walk / Trail (*) GrP 6 ADA Pedestrian Curb Ramp GrP 7 Concrete Curb and Gutter	1) sg. yd.	\$25.00	1.820	\$45.500
GrP 6 ADA Pedestrian Curb Ramp	each	\$800.00	20 4,120	\$16,000
GrP 8 Removals - Pavement	lin. ft. sq. yd.	\$12.00 \$2.50	8,380	\$49,440 \$20,950
SUBTOTAL PAVING AND GRADING COSTS		Ψ2.00	0,000	\$418,630
DRAINAGE, UTILITIES AND EROSION CONTROL			<u> </u>	, ,,,,,,,
Dr 1 Local Utilities - Sanitary Sewers Dr 2 Local Utilities - Watermains	lin. ft.			
Dr 2 Local Utilities - Watermains	lin. ft.			
Dr 3 Water Quality Ponds Dr 5 Drainage - urban (10-30%)	l.s. 30%			\$126,000
Dr 6 Turf Establishment & Erosion Control	10%			\$42,000
Dr 7 Landscaping				
SUBTOTAL DRAINAGE, UTILITIES AND ER	OSION CONTRO	_		\$168,000
SIGNAL AND LIGHTING COSTS		0000 000		
SGL 1 Signals (permanent) SGL 2 At Grade Intersection Lighting (permanent - non s	each signa each	\$200,000 \$10,000	12	\$120.000
SUBTOTAL SIGNAL AND LIGHTING COSTS		000,01ψ	12	\$120,000
SIGNING & STRIPING COSTS	··		LL	V120,000
SGN 1 Mainline Signing (C&D)	mile	\$20.000	0.3	\$6,000
SGN 2 Mainline Striping	mile	\$10,000	0.3	\$3,000
SUBTOTAL SIGNING & STRIPING COSTS:				\$9,000
SUBTOTAL CONSTRUCTION COSTS:				\$715,630
MISCELLANEOUS COSTS				
M 1 Mobilization	6%			\$43,000
M 2 Non Quantified Minor Items (10% to 30%) M 3 Temporary Payement & Drainage	20%			\$143,000 \$14,000
M 3 Temporary Pavement & Drainage M 4 Traffic Control	2% 4%		+	\$14,000 \$29,000
SUBTOTAL MISCELLANEOUS COSTS:				\$229,000
ESTIMATED TOTAL CONSTRUCTION COSTS without	t Contingency:		•	\$944,630
1 Contingency or "risk" (10% to 30%)	20%			\$189,000
ESTIMATED TOTAL CONSTRUCTION COSTS PLUS	CONTINGENCY:			\$1,133,630
	<u> </u>		<u> </u>	
OTHER PROJECT COSTS:				
R/W ACQUISITIONS	Lump Sum			
DESIGN ENG. & CONSTRUCTION ADMIN.	Lump Sum			
SUBTOTAL OTHER PROJECT COSTS				
TOTAL PROJECT COST (based upon 2016 bid	I price information	n)		\$1,133,630
INFLATION COST (CURRENT YR. TO YR. OF C	OPE Years	3%		
TOTAL PROJECT COST (OPENING YEAR DOL		570		\$1,133,630
TOTAL PROJECT COST (OPENING TEAR DOL	LAKO)			φ1,133, 0 30

NOTE: (1) Includes aggregate base class 5.

MAJOR ITEMS NOT INCLUDED:
- Local utilities (sanitary sewer or watermain)
- Water quality bonds or other BMPs
- R/W acquisitions
- Engineering design fees
- Inflation