Intersection Control Evaluation

Balcerzak Drive at Pohl Road

in Mankato, Blue Earth County, Minnesota

Mankato/North Mankato Area Planning Organization

October 2016

SRF No. 016 09243

Intersection Control Evaluation

Balcerzak Drive at Pohl Road

Proposed Letting Date: TBD

Report Certification:

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

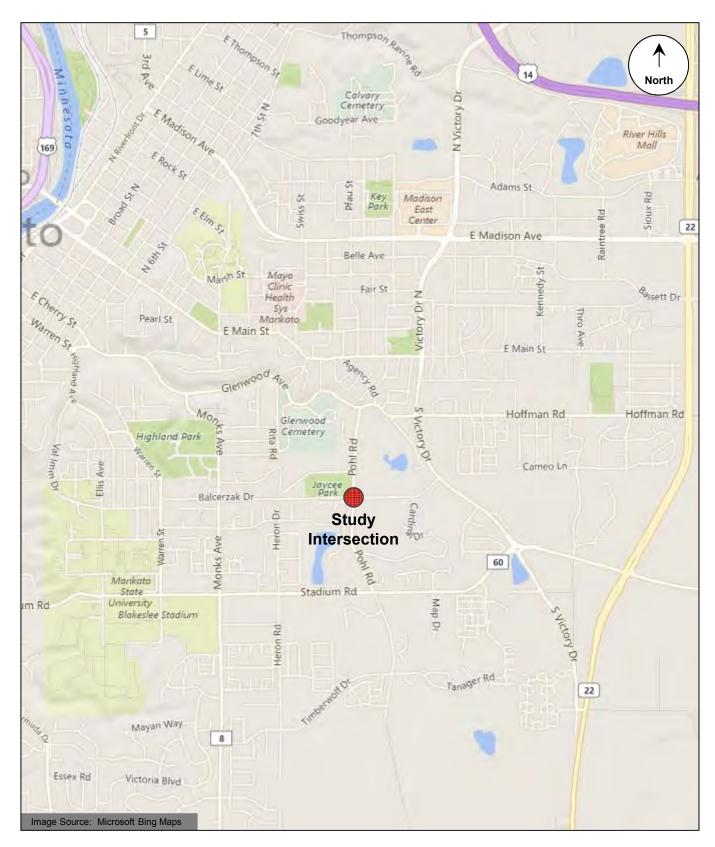
Scott C. Poska	47068
Print Name	Reg. No.
Ato C. W.	10-31-16
Signature	Date
Approved:	
(Jack)	12-15-16
City of Mankato // City Engineer	Date
City Engineer	

Table of Contents

Introduction	I
Existing Intersection Characteristics	
Future Conditions	
Traffic Volumes	
Analysis of Alternatives	
Alternatives Assessment	
Conclusions and Recommendations	
Appendix	

 $H:\ \ Projects \ \ \ 09000 \ \ \ 9243 \ \ SD \ \ Reports \ \ \ 9243 \ \ ICE\ Pohl\ Balcerzak\ \ 2016-10-26.docx$

Introduction


This report contains the intersection control evaluation results for the Balcerzak Drive at Pohl Road intersection in Mankato, Blue Earth County, Minnesota (see Figure 1). The purpose of the evaluation was to analyze the intersection control alternatives for the intersection to identify the long-term preferred intersection control. The following intersection control alternatives were considered applicable and are analyzed within this report:

- All-Way Stop Control
- Roundabout Control
- Traffic Signal Control

A mini-roundabout variation was also explored. According to *Mini-Roundabouts Technical Summary* (Federal Highway Administration, 2010), mini-roundabouts are best suited/most efficient in lower speed environments (30 mph or less), and are generally recommended for intersections in which the total entering daily traffic volume is no more that approximately 15,000 vehicles. The intersection currently has 14,900 entering vehicles and is forecasted to reach 19,300 by 2036, and Balcerzak Drive has a posted speed of 40 mph. Large vehicles are typically required to over-run the fully traversable central island, and high volumes of large vehicles will significantly reduce the capacity of a mini-roundabout, and may lead to rapid wear of the roadway markings. Based on these factors, the mini-roundabout option was not analyzed further at the study intersection.

A detailed warrants analysis, operational analysis, safety analysis, and planning-level cost analysis were performed to determine the preferred intersection control alternative. In addition to these analyses, other factors considered for this evaluation that were applicable to determining the long-term preferred intersection control included:

- Right-of-Way Considerations
- Transportation System Considerations
- Pedestrian and Bicycle Considerations
- Local Acceptance

Study Intersection

Figure 1

Existing Intersection Characteristics

Existing Conditions

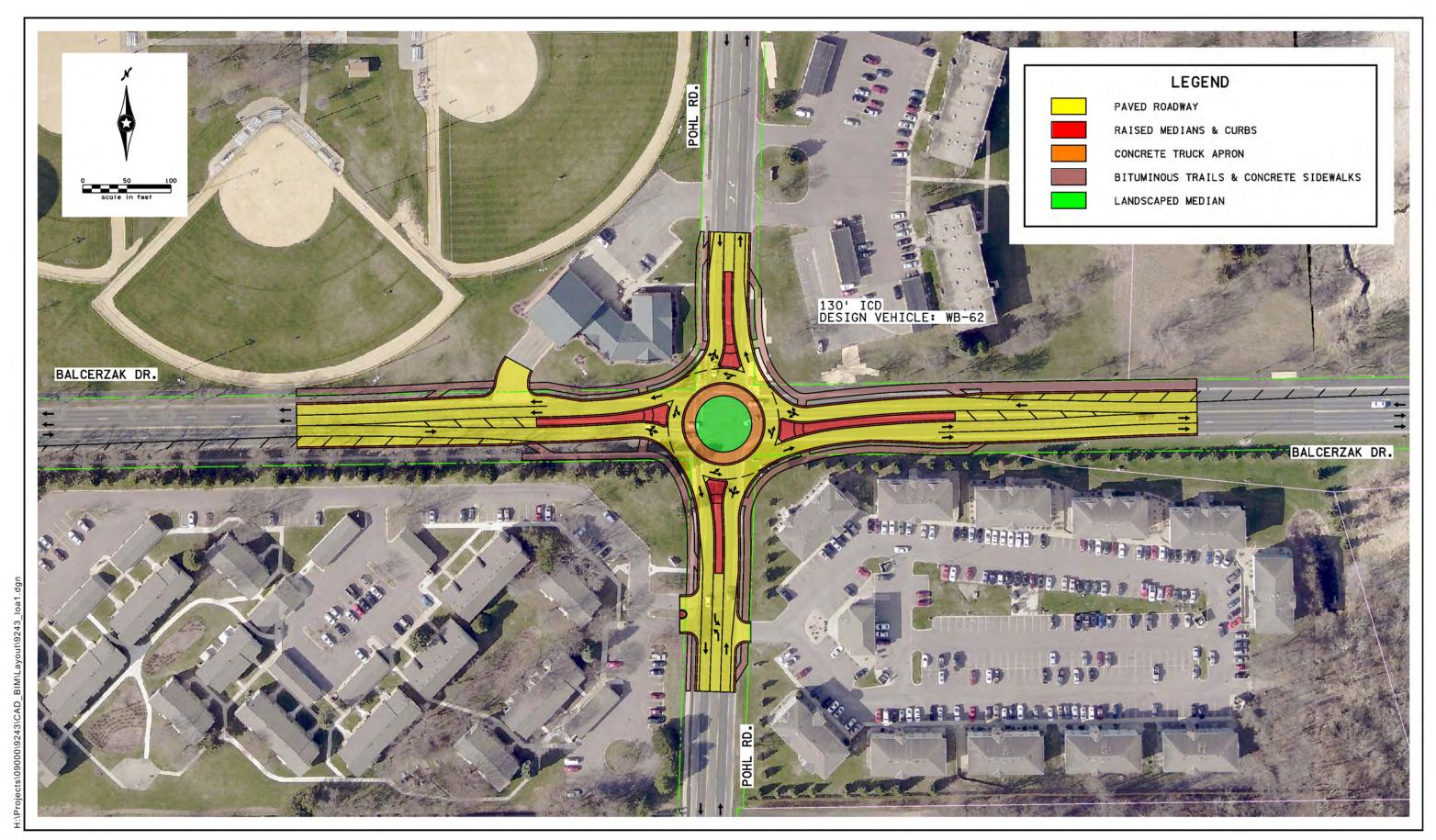
The study intersection is located in the City of Mankato, Blue Earth County, as shown in Figure 1. Balcerzak Drive is a four-lane undivided city street with a speed limit of 40 mph and is functionally classified as a Minor Arterial. Pohl Road was recently restriped from a four-lane to a three-lane undivided roadway. Pohl Road is a city street with a speed limit of 30 mph and is functionally classified as a Major Collector. The intersection of Balcerzak Drive and Pohl Road is currently all-way stop controlled. There are trails/sidewalks on the north side of Balcerzak Drive, the south side of Balcerzak Drive to the west of Pohl Road, and the west side of Pohl Road. Pohl Road also has shoulders that can be utilized as bike lanes. There are marked pedestrian crossings on the north and west legs (matching the sidewalk locations). The adjacent area has primarily residential land uses. Minnesota State University is located approximately one mile to the west. The existing lane configurations for the Balcerzak Drive and Pohl Road intersection are listed in Table 1 below and are shown in Figure 2.

Table 1. Existing Conditions

Leg	Configuration
Eastbound Balcerzak Drive	One shared thru/left-turn lane and one shared thru/right-turn lane
Westbound Balcerzak Drive	One shared thru/left-turn lane and one shared thru/right-turn lane
Northbound Pohl Road	One left-turn lane and one shared thru/right-turn lane
Southbound Pohl Road	One left-turn lane and one shared thru/right-turn lane

Crash History

Crash data was obtained from the Minnesota Crash Mapping Analysis Tool (MnCMAT) database for a five-year period from 2011 to 2015. There were twenty-two recorded crashes at the study intersection during the analysis period. Detailed crash data is provided in the Appendix. This results in a crash rate of 0.81 crashes per million entering vehicles, which exceeds the statewide average of 0.35 for all-way stop controlled intersections and the critical crash rate of 0.56 (0.95 level of confidence) for this intersection. However, Pohl Road was recently restriped and converted from a four-lane road to a three-lane road, and the majority of the crashes occurred under the previous conditions, and are not relevant to consider with the current intersection configuration.



Future Conditions

Based on discussions with city staff in the summer of 2016, no short-term improvements to Balcerzak Drive, Pohl Road, or the study intersection are planned. For the alternatives analysis, the existing lane configurations under all-way stop control (listed in Table 1 and shown in Figure 2) were assumed to be the same for the traffic signal control alternative. All-way stop control and traffic signal control were also analyzed with the variation of Balcerzak Drive changed to a three-lane roadway (one left-turn lane and one shared thru/right-turn lane on each approach, matching the configuration on Pohl Road). This is commonly referred to as a "road diet." The lane configurations for the roundabout control alternative are listed in Table 2 below and are shown in Figure 3. In the roundabout concept design shown, Balcerzak Drive is a four-lane roadway to match existing conditions, though the roundabout alternative could accommodate either a four-lane or three-lane section on Balcerzak Drive.

Table 2. Proposed Lane Configurations for Roundabout Control Alternative

Leg	Configuration
Eastbound Balcerzak Drive	One shared lane (all movements)
Westbound Balcerzak Drive	One shared lane (all movements)
Northbound Pohl Road	One shared lane (all movements)
Southbound Pohl Road	One shared lane (all movements)

Traffic Volumes


Hourly traffic volumes including the existing a.m. and p.m. peak hour were collected in late April 2016 by SRF prior to the conclusions of the spring term at nearby Minnesota State University and are shown in Figure 4. Pedestrian and bicycle volumes were also collected. Growth rates from the MAPO 2045 Transportation Plan (0.9% for the north leg, 1.6% for the east leg, 1.6% for the south leg, and 1.5% for the west leg) were used to determine Forecasted Year 2036 peak hour turning movement volumes, which are shown in Figure 5.

Existing Year 2016 Volumes

Figure 4

Forecasted Year 2036 Volumes

Figure 5

Analysis of Alternatives

The analysis of the all-way stop control, traffic signal control, and roundabout control alternatives included a warrants analysis, operational analysis, planning-level crash analysis, and a planning-level cost analysis. Existing Year 2016 and Forecasted Year 2036 volumes with proposed lane configurations discussed previously were used for the analysis.

Warrants Analysis

A warrants analysis was performed for the traffic signal control alternative as outlined in the February 2015 *Minnesota Manual on Uniform Traffic Control Devices* (MN MUTCD). The signal warrants analysis was based on the assumptions shown in Table 3.

Table 3. Warrants Analysis Assumptions

Leg	Geometry	Speed
Eastbound Mainline (Balcerzak Drive)	2 or more approach lanes	40 mph
Westbound Mainline (Balcerzak Drive)	2 or more approach lanes	40 mph
Northbound Minor Street (Pohl Road)	1 approach lane	30 mph
Southbound Minor Street (Pohl Road)	1 approach lane	30 mph

Because of the shared northbound and southbound thru/right-turn lanes, minor approach right turns were included in the analysis. Because of the low northbound and southbound left-turn volumes compared to the thru and right-turn volumes, the minor approaches were considered as one lane approaches. Table 4 provides a summary of the results of the warrants analysis. The detailed warrants analysis can be found in the Appendix.

Table 4. Warrants Analysis Results

MN MUTCD Warrant	Hours		2016 mes	Forecasted Year 2036 Volumes	
WIN MOTOD Warrant	Required	Hours Met	Warrant Met	Hours Met	Warrant Met
Warrant 1A: Minimum Vehicular Volume	8	5	No	10	Yes
Warrant 1B: Interruption of Continuous Traffic	8	0	No	3	No
Warrant 1C: Combination of Warrants	8	3	No	8	Yes
Warrant 2: Four-Hour Volume	4	3	No	9	Yes
Warrant 3B: Peak-Hour Volume	1	0	No	3	Yes
Multi-way Stop Applications Condition C	8	14	Yes	15	Yes

Warrants 4-9 were investigated but were determined to be not applicable. Results of the warrants analysis indicate that Existing Year 2016 volumes do not satisfy any MN MUTCD traffic signal warrants, while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 1 (Conditions A and C), 2, and 3B. The intersection meets multi-way stop warrants in 2016 and 2036.

Operational Analysis

An initial planning-level analysis was performed for the roundabout control alternative based on Highway Capacity Manual methods found in *NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition* (Transportation Research Board, 2010). The analysis involved testing the theoretical capacity of a single-lane roundabout against the Forecasted Year 2036 entering and circulating volumes. As shown in Chart 1, the Forecasted Year 2036 volumes do not exceed the theoretical capacity of a single-lane roundabout. Therefore, a single lane roundabout was selected for further analysis.

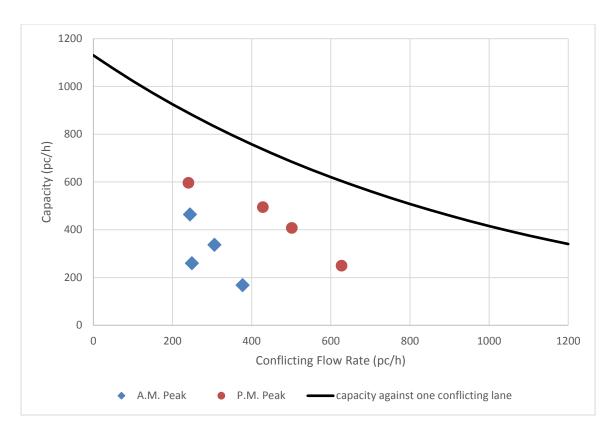


Chart 1. Single-Lane Roundabout Entry Lane Capacity (Forecasted Year 2036 volumes)

Operational analysis of the roundabout control alternative was performed using RODEL and Highway Capacity Software (HCS). RODEL is a software program that is based on existing roundabout operational research and uses an empirical formula method to determine roundabout delay based on geometric features and traffic flows. RODEL is the current MnDOT accepted analysis tool for evaluating roundabouts. HCS is based on methodologies found in the 2010 Highway Capacity Manual (HCM) which is considered a conservative approach to determining the capacity of a roundabout. It is important to note that RODEL and HCS only report "stop" or "control" delay. Therefore, in order to determine the total delay, "geometric" delay, or delay due to vehicle deceleration and acceleration through an intersection, must be added to the "stop" or "control" delay.

The detailed operational analysis of all-way stop control and traffic signal control was performed using methods outlined in the 2010 HCM using Synchro/SimTraffic. Synchro/SimTraffic is capable of calculating various measures of effectiveness such as control delay, queuing, and total travel time impacts. SimTraffic results are reported for the analysis.

The operational analysis identified a Level of Service (LOS), which indicates how well an intersection is operating based on average delay per vehicle. Intersections are given a ranking from LOS A to LOS F. LOS A indicates the best traffic operation and LOS F indicates an intersection where demand exceeds capacity. LOS A through LOS D are generally considered acceptable. RODEL results for a Confidence Level (CL) of 50% and 85% were determined. 50% CL results are typically used for roundabout analysis while the 85% CL results indicate

the sensitivity of the roundabout design. When a substantial degradation in LOS is expected from 50% CL to 85% CL, designers should exercise caution in the design of the roundabout to ensure adequate capacity is provided.

Tables 5 and 6 provide a summary of the operational analysis for Existing Year 2016 and Forecasted Year 2036 conditions, respectively. Detailed operational analysis results can be found in the Appendix (report sheets with an * after the alternative name denote the three-lane Balcerzak variation).

Table 5. Existing Year 2016 Operational Analysis Results

	Analysis Tool		A.M.	Peak	P.M. Peak	
Alternative			Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control (Existing)	Synchro/SimTraffic		5/6	A/A	6/7	A/A
All-Way Stop Control (Balcerzak three-lane)	Synchro/SimTraffic		5/6	A/A	8/10	A/B
Traffic Signal Control (Balcerzak four-lane)	Synchro/SimTraffic		7/7	A/A	8/11	A/B
Traffic Signal Control (Balcerzak three-lane)	Synchro/SimTraffic		7/8	A/A	11/13	B/B
	HCS 2010		7/8	A/A	10/11	B/B
Roundabout Control	RODEL	50% CL	4/5	A/A	5/5	A/A
		85% CL	6/7	A/A	8/8	A/A

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Table 6. Forecasted Year 2036 Operational Analysis Results

	Analysis Tool		A.M.	Peak	P.M. Peak	
Alternative			Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control (No Build)	Synchro/SimTraffic		11/20	B/C	13/16	B/C
All-Way Stop Control (Balcerzak three-lane)	Synchro/SimTraffic		13/25	B/D	70/>100	F/F
Traffic Signal Control (Balcerzak four-lane)	Synchro/SimTraffic		10/13	A/B	12/17	B/B
Traffic Signal Control (Balcerzak three-lane)	Synchro/SimTraffic		9/11	A/B	15/20	B/B
	HCS 2010		9/11	A/B	16/18	C/C
Roundabout Control	RODEL	50% CL	5/6	A/A	7/8	A/A
		85% CL	7/9	A/A	12/14	B/B

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Results of the operational analysis indicate that under the existing all-way stop control, the intersection operates with an acceptable level of service, and would continue to do so under Forecasted Year 2036 conditions. However, with a three-lane Balcerzak Drive, all-way stop control would have an unacceptable level of service during the p.m. peak under Forecasted Year 2036 volumes. The traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions. The p.m. peak hour factor is 0.93, which indicates this peak hour volume is sustained over the entire peak hour. There is no significant difference in operations for traffic signal control with Balcerzak Drive being a four-lane or three-lane roadway.

Safety Analysis

A crash analysis was performed to determine the projected crashes per year for Year 2016 and Forecasted Year 2036 conditions for the study intersection. Crash rates from the MnDOT Green Sheets (2011 to 2015 data) were used for the crash analysis of the alternatives. According to NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition (Transportation Research Board, 2010), the conversion of an all-way stop controlled intersection to a roundabout has an insignificant impact on safety. Therefore, the crash rate for all-way stop control was used for the roundabout control alternative. A summary of the crash analysis is shown in Table 7.

Table 7. Crash Analysis Results

Alternative	Intersection AADT (2016)	Intersection AADT (2036)	Crash Rate	Projected Crashes/Year (2016)	Projected Crashes/Year (2036)
All-Way Stop Control			0.35	2	3
Traffic Signal Control	14,900	19,300	0.52	3	4
Roundabout Control			0.35	2	3

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative.

Studies have determined that the installation of a roundabout can improve overall safety of an intersection when compared to other forms of intersection control. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased. A roundabout virtually eliminates right-angle and left-turn head-on crashes. Studies have shown the frequency of injury crashes is reduced more than property damage only crashes.

At a roundabout, drivers must be aware of traffic traveling around the circle when merging on or off the roundabout. Conversely, drivers at a traditional intersection must be aware of vehicles at all approaches and the movements they are making. This issue is most prevalent at stop-controlled intersections where there is not a traffic signal to control vehicle movements.

Planning-Level Cost Analysis

Capital Costs

The intersection is currently all-way stop controlled, therefore with a "no build" alternative there would be no cost to continue with this type of intersection control. The "road diet" variation with Balcerzak Drive as a three-lane roadway would involve removing and installing new pavement markings within the existing roadway curb lines. This type of restriping project would need to be performed along a large portion of Balcerzak Drive, outside the focus are of this project. Therefore no additional costs for conversion of the Balcerzak Drive pavement markings to a three-lane roadway were assumed. It is likely this restriping project would be undertaken as part of a mill and overlay project. The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost than the traffic signal control alternative.

Operation and Maintenance Costs

Traffic signals typically have higher operation and maintenance costs than roundabouts because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island. All-way stop control operation and maintenance costs are only the ongoing costs of maintaining the stop signs and pavement markings.

A cost analysis summary is shown in Table 8. Detailed cost analysis results can be found in the Appendix.

 Table 8.
 Cost Analysis Summary

Alternative	Capital Costs (1)	Operation/Maintenance Costs (annual)
All-Way Stop Control	\$0	< \$200
Traffic Signal Control	\$300,000	\$4,000-\$6,000
Roundabout Control	\$1,390,000	\$500-\$1,000

⁽¹⁾ Does not include engineering or right-of-way costs.

Alternatives Assessment

Right-of-Way Considerations

The roadway geometry for the all-way stop control and traffic signal control alternatives, including the "road diet" variation, would use existing conditions and therefore no additional right-of-way would be required. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. The fire station property in the northwest quadrant would be impacted the most with the trail potentially coming within approximately ten feet of the building.

Transportation System Considerations

There is an existing traffic signal approximately one-third of a mile east of the study intersection at the Balcerzak Drive and Victory Drive intersection, and an existing traffic signal half of a mile to the west of study intersection at the Balcerzak Drive and Monks Avenue intersection. The traffic signal control alternative would provide the opportunity for coordination with the Victory Drive signal. The traffic signal control alternative would extend the intersection control continuity along Balcerzak Drive. The roundabout control alternative could be considered a traffic calming measure for the surrounding residential area.

Pedestrian and Bicycle Considerations

Currently, there are trails/sidewalks on the north side of Balcerzak Drive, the south side of Balcerzak Drive to the west of Pohl Road, and the west side of Pohl Road. Pohl Road also has shoulders that are used as bike lanes. Jaycee Park in the northwest quadrant contributes to high pedestrian activity. Pedestrian accommodations can be provided regardless of selected intersection control.

The design of a roundabout allows pedestrians to cross one direction of traffic at a time with a refuge space in the middle of each leg of the roundabout, and these short crossing distances and reduced travel speeds of traffic improve pedestrian safety. Their route is slightly longer since they are kept to the outside of the inscribed circle. The roundabout concept design shown includes slip ramps to transition bicyclists between on-street bike lanes and multi-use trails around the perimeter of the roundabout.

The design of signalized intersections can create a safe environment for pedestrian crossings with the use of pedestrian signal phasing. This phasing allows pedestrians to safely cross an intersection while vehicular movements are served. Although signalized intersections can provide indications showing pedestrian right-of-way, potential conflicts can come from red-light running through vehicles and permissive turning traffic.

The all-way stop alternative would provide a safety benefit for pedestrians by having all vehicular movements stop; however, there are safety concerns for pedestrians where all road users expect other road users to stop. Most vehicle-pedestrian collisions at all-way stop controlled intersections are a result of either vehicles not stopping when pedestrians assume they are, or pedestrians not paying attention to vehicles approaching the intersection.

Local Acceptance

Drivers are familiar with traveling through all-way stop controlled and signalized intersections since there are many intersections in the area under these types of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area including one nearby at Stadium Road and Victory Drive.

Conclusions and Recommendations

The following conclusions are provided for this intersection control evaluation for the Balcerzak Drive at Pohl Road intersection in Mankato, Blue Earth County, Minnesota:

• Warrants Analysis

Results of the warrants analysis indicate that Existing Year 2016 volumes do not satisfy any MN MUTCD traffic signal warrants, while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 1 (Conditions A and C), 2, and 3B. The intersection meets multi-way stop warrants in 2016 and 2036.

Operational Analysis

Results of the operational analysis indicate that under the existing all-way stop control, the intersection operates with an acceptable level of service, and would continue to do so under Forecasted Year 2036 conditions. However, with a three-lane Balcerzak Drive, all-way stop control would have an unacceptable level of service during the p.m. peak under Forecasted Year 2036 volumes. The traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions. There is no significant difference in operations for traffic signal control with Balcerzak Drive being a four-lane or three-lane roadway.

• Safety Analysis

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased.

• Planning-Level Cost Analysis

There would be no cost to continue with the existing all-way stop control. The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements, which would be approximately \$300,000. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost estimate of approximately \$1,390,000. Traffic signals typically have higher operation and maintenance costs because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island. Stop control operation and maintenance costs are only the ongoing costs of maintaining the stop signs and pavement markings.

• Right-of-Way Considerations

The roadway geometry for the all-way stop control and traffic signal control alternatives, including the "road diet" variation, would use existing conditions and therefore no

additional right-of-way would be required. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. The fire station property in the northwest quadrant would be impacted the most with the trail potentially coming within approximately ten feet of the building.

Transportation System Considerations

The traffic signal control alternative would extend the intersection control continuity along Balcerzak Drive, and would provide the opportunity for coordination with the Victory Drive signal. The roundabout control alternative could be considered a traffic calming measure for the surrounding residential area.

Pedestrian Considerations

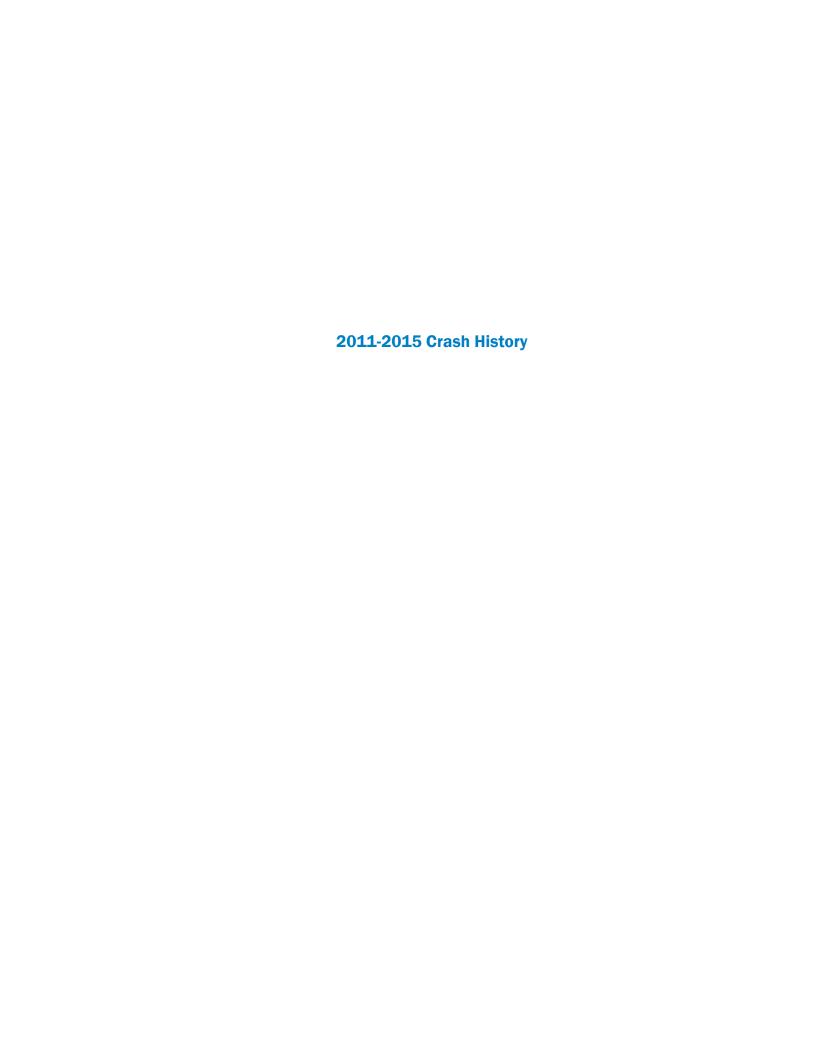
The design of signalized intersections can take pedestrian crossings and safety into consideration with the use of pedestrian signal phasing. The design of a roundabout allows pedestrians to cross one direction of traffic at a time on each leg of the roundabout. Their route is slightly longer since they are kept to the outside of the inscribed circle. All-way stop control provides a safety benefit for pedestrians by having all vehicular movements stop; however, most vehicle-pedestrian collisions at all-way stop controlled intersections are a result of either vehicles not stopping when pedestrians assume they are, or pedestrians not paying attention to vehicles approaching the intersection.

Local Acceptance

Drivers are familiar with traveling through signalized intersections since there are many intersections in the area under this type of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area.

A decision matrix was developed to help evaluate the key factors and is provided on the following page. Based on the results of this Intersection Control Evaluation, we recommend the Balcerzak Drive at Pohl Road intersection remain under all-way stop control and monitor crashes for one to two years. If the crash problem persists, then we recommend converting Balcerzak Drive to a three-lane roadway to improve safety in the near-term. However, this configuration would have unacceptable operations by Forecasted Year 2036. The traffic signal control and roundabout control alternatives are both viable long-term options for the intersection in either a four-lane or three-lane Balcerzak Drive roadway configuration, with a roundabout fitting seamlessly into the three-lane configuration. The traffic signal control and roundabout control alternatives have comparable operations in both existing and Forecasted Year 2036. Compared to a traffic signal, a roundabout would have more consistent off-peak operations throughout the day when traffic volumes are lower. A roundabout would have more capital and right-of-way costs, but would have lower annual operation and maintenance costs. Therefore, the roundabout control alternative is recommended.

Balcerzak Drive Four-Lane Roadway


<u>Factor</u>		All-Way Stop Control	Traffic Signal Control	Roundabout Control	Recommended Alternative(s) Based on Factor
Warrants	2016	AWSC warrant met	Existing Year 2016 volumes do not meet traffic signal control warrants	N/A	All-Way Stop Control Roundabout Control
Analysis	2036	AWSC warrant met	Forecasted Year 2036 volumes meet traffic signal control warrants	N/A	All-Way Stop Control Traffic Signal Control Roundabout Control
Operational	2016	Acceptable LOS	Acceptable LOS	Acceptable LOS Consistent off-peak operations	All-Way Stop Control Traffic Signal Control Roundabout Control
Analysis	2036	Acceptable LOS with four-lane Balcerzak Drive	Acceptable LOS	Acceptable LOS	
Safety	Pro(s):	 Least number of crashes expected Lower vehicle speeds through intersection 	Signal indications show vehicle right-of-way	 Least number of crashes expected Lower vehicle speeds through intersection 	All-Way Stop Control Roundabout Control
Analysis	Con(s):	Drivers decide right-of-way	Slightly more crashes expected than all-way stop or roundabout	Drivers select acceptable gaps	
Cost	Pro(s):	No cost Low operation/maintenance costs	Lower capital costs (\$300,000) than roundabout control	Lower operation/maintenance costs than traffic signal control	All-Way Stop Control
Analysis	Con(s):	none	 Higher capital costs than all-way stop Higher operation/maintenance costs than roundabout control 	 Higher capital costs (\$1,390,000) than all-way stop or traffic signal control Requires substantial roadway reconstruction 	
Right-of-Way	Pro(s):	N/A (existing control)	No ROW impacts	none	All-Way Stop Control Traffic Signal Control
Rigitt-Oi-Way	Con(s):	N/A (existing control)	none	Requires additional ROW in all four quadrants	
Transportation System	Pro(s):	N/A (existing control)	Provides control continuity along Balcerzak Drive	Traffic calming through residential area	All-Way Stop Control Traffic Signal Control Roundabout Control
Considerations	Con(s):	N/A (existing control)	none	none	
Pedestrian and	Pro(s):	All vehicular movements stop	 Pedestrian pushbuttons and signal phasing 	Pedestrian Refuge islandsBike slip rampsLower vehicle speeds thru intersection	Traffic Signal Control Roundabout Control
Bicycle Considerations	Con(s):	 Expecting vehicles to yield to pedestrians can lead to a false sense of security 	Pedestrian signal phasing can lead to a false sense of security	Longer pedestrian route No pedestrian phase	
Local	Pro(s):	N/A (existing control)	Familiar to drivers	Familiar to drivers	All-Way Stop Control Traffic Signal Control Roundabout Control
Acceptance	Con(s):	TYTE (CASCING CONTROL)	none	none	

Balcerzak Drive Three-Lane Roadway

		Pareer zame mode and modernay			
Operational	2016 • Acceptable LOS Operational		Acceptable LOS	Acceptable LOS	Traffic Signal Control Roundabout Control
Analysis	2036	Unacceptable p.m. peak LOS with Balcerzak three-lane variation	Acceptable LOS	Acceptable LOS	
Safety	Pro(s):	Vehicular safety benefits with only one opposing thru lane	Vehicular safety benefits with only one opposing thru lane	Vehicular safety benefits with no thru lane drop before roundabout	All-Way Stop Control Traffic Signal Control Roundabout Control
Analysis	Con(s):	• None	• None	• None	

Appendix

- 2011-2015 Crash History
- Existing Year 2016 Warrants Analysis
- Forecasted Year 2036 Warrants Analysis
- Existing Year 2016 Detailed Operational Analysis
- Forecasted Year 2036 Detailed Operational Analysis
- Detailed Cost Analysis

Crash Detail Report

Balcerzak Drive and Pohl Road

Report Version 1.0 March 2010

Date: 02/12/2011 Crash ID: 110430113

Svs: 05-MSAS Time: 1148

First Event: ON ROADWAY

Route: 24200113 001+00.770 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION

Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: WET Diagram: RIGHT ANGLE Light Cond: DAYLIGHT Officer:

Weather 1: CLOUDY Reliability: CONFIDENT

Weather 2: CLOUDY # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STRAIGHT AHEAD

Veh Type: PASSENGER CAR

Age: 23 F Gender:

> Cond: NORMAL

Cont Fact 1 DISREGARD TRAFFIC DEVICE

Cont Fact 2 FAIL TO YIELD ROW Unit 2

STRAIGHT AHEAD

SPORT UNTILITY VEHICLE

F

NORMAL

NO IMPROPER DRIVING

NO IMPROPER DRIVING

Unit 3

Sys: 05-MSAS **Crash ID:** 110600140 **Date:** 01/25/2011 **Time:** 0855

Route: 24200113 001+00.770 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: DRY Diagram: RIGHT ANGLE

Light Cond: DAYLIGHT Officer:

Weather 1: CLOUDY Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir:

Veh Act: STRAIGHT AHEAD

Veh Type: PASSENGER CAR

22 Age: Gender:

Cont Fact 2

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED

NOT SPECIFIED

Unit 2

STRAIGHT AHEAD

PASSENGER CAR

20

NOT SPECIFIED NOT SPECIFIED

NOT SPECIFIED

Unit 3

08/01/2016 Page 1 of 12 MnCMAT 1.0.0

Sys: 05-MSAS **Crash ID:** 113400128 **Date:** 12/06/2011 **Time:** 1454 Route: 24200140 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: CLEAR # of Vehicles: 2.00

Unit 1

Trav Dir: Ν

Veh Act: STRAIGHT AHEAD

Veh Type: 3+AXLE SINGLE UNIT

Age: 39 Gender: М

> Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NO IMPROPER DRIVING Unit 2

STRAIGHT AHEAD

PICKUP TRUCK

18 F

NORMAL

FAIL TO YIELD ROW

VISION OBSCURED - SUN OR HEA

Speed Limit: 40

Officer:

Diagram: RIGHT ANGLE

Unit 3

Crash ID: 120520226 County: BLUE EARTH **Date:** 12/12/2011 City: MANKATO

Time: 1730

Sys: 05-MSAS

Route: 24200113

001+00.776

000+00.783

Severity: PROPERTY DAMAGE Road Type: NOT SPECIFIED Road Char: NOT SPECIFIED

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: SUNSET

Weather 1: CLEAR Weather 2: NOT SPECIFIED First Event: NOT SPECIFIED

To Junction: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Speed Limit:

Diagram: REAR END

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

STOPPED TRAFFIC Veh Act:

Veh Type: PASSENGER CAR

Age: Gender:

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED

Unit 2

SLOWING TRAFFIC

PASSENGER CAR

NOT SPECIFIED NOT SPECIFIED

NOT SPECIFIED

Unit 3

08/01/2016 Page 2 of 12 MnCMAT 1.0.0

Sys: 05-MSAS **Crash ID:** 120540155 **Date:** 01/09/2012 **Time:** 1434 Route: 24200140 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: DRY Diagram: SIDESWIPE PASSING Officer: Light Cond: DAYLIGHT

Reliability: CONFIDENT Weather 1: CLEAR Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: CHANGING LANES

PASSENGER CAR

Age: 25 Gender: M

Veh Type:

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Unit 2

STRAIGHT AHEAD

PASSENGER CAR

20 М

> NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED

Unit 3

000+00.783

001+00.770

Sys: 05-MSAS Crash ID: 121140043 **Date:** 03/20/2012 **Time:** 1355 Route: 24200113 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: WET Light Cond: DAYLIGHT

Weather 1: CLOUDY Weather 2: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 40

Diagram: SIDESWIPE OPPOSING

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

Veh Act: STRAIGHT AHEAD Veh Type: PASSENGER CAR

20 Age: Gender:

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED

Unit 2

STRAIGHT AHEAD VAN OR MINIVAN

NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED

 Crash ID:
 121290067
 Date:
 04/04/2012
 Time:
 1720
 Sys:
 05-MSAS

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 24200140

Severity:PROPERTY DAMAGEFirst Event:NOT SPECIFIEDRoad Type:NOT SPECIFIEDTo Junction:NOT SPECIFIEDRoad Char:NOT SPECIFIEDTraffic Device:STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY
Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: W

Veh Act: STRAIGHT AHEAD
Veh Type: PASSENGER CAR

Age: 21
Gender: F

Cond: NOT SPECIFIED

Cont Fact 1 NOT SPECIFIED

Cont Fact 2 NOT SPECIFIED

Unit 2

STRAIGHT AHEAD

PICKUP TRUCK

22 F

S

NOT SPECIFIED

NOT SPECIFIED

Unit 3

000+00.783

 Crash ID:
 121750130
 Date:
 06/23/2012
 Time:
 1934
 Sys:
 05-MSAS

 County:
 BLUE EARTH
 City:
 MANKATO
 Route:
 24200140
 000+00.783

Severity: PROPERTY DAMAGE

Road Type: 4_6 LANES UNDIV 2_WAY Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY
Light Cond: DAYLIGHT

Weather 1: CLEAR
Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 40

Speed Limit: 40

Officer:

Diagram: NOT CODED

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir: N

Veh Act: STRAIGHT AHEAD

Veh Type: PASSENGER CAR

Age: 900
Gender: UNK

Cond: UNKNOWN

Cont Fact 1 DISREGARD TRAFFIC DEVICE

Cont Fact 2 | NOT SPECIFIED

Unit 2

Ε

STRAIGHT AHEAD
PASSENGER CAR

F

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Sys: 05-MSAS **Crash ID:** 122640009 **Date:** 09/19/2012 **Time:** 1823

Route: 24200113 001+00.770 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: INTERSECTION-RELATED Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY Speed Limit: 30

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: S

Veh Act: LEFT TURN

Veh Type: PASSENGER CAR

Age: 64 Gender: M

> Cond: NORMAL

Cont Fact 1 IMPROPER LANE

Cont Fact 2 IMPROPER TURN Unit 2

STRAIGHT AHEAD

PASSENGER CAR

19 М

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

Crash ID: 132250126 County: BLUE EARTH **Date:** 08/13/2013 City: MANKATO

Time: 1433

Sys: 05-MSAS

Route: 24200113

001+00.770

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: DAYLIGHT

Weather 1: CLOUDY Weather 2: NOT SPECIFIED First Event: ON ROADWAY

First Event: ON ROADWAY

Officer:

Diagram: LEFT TURN INTO TRAFFIC

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: START TRAFFIC

PASSENGER CAR

21 Age:

Veh Type:

Gender:

Cond: NORMAL

Cont Fact 1 FAIL TO YIELD ROW

Cont Fact 2 NOT SPECIFIED Unit 2

START TRAFFIC

PASSENGER CAR

59 F

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Sys: 05-MSAS **Crash ID:** 133150095 **Date:** 11/11/2013 **Time:** 0903

Route: 24200140 000+00.783 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/SIGN POLE

Surf Cond: ICE/PACKED SNOW

Light Cond: DAYLIGHT

Weather 1: CLOUDY Weather 2: NOT SPECIFIED First Event: ON ROADWAY

Speed Limit: 30

Diagram: RAN OFF ROAD - RIGHT SIDE

Officer:

Reliability: CONFIDENT

of Vehicles: 1.00

Unit 1

Trav Dir: S

Veh Act: STRAIGHT AHEAD Veh Type: VAN OR MINIVAN

Age: 56 Gender: F

> Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED Unit 2

Unit 3

Crash ID: 133160186 **Date:** 11/12/2013

County: BLUE EARTH City: MANKATO Sys: 05-MSAS

Route: 24200113 001+00.770

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY Light Cond: DAYLIGHT

Weather 1: CLEAR

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Time: 1627

Diagram: SIDESWIPE PASSING

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

STRAIGHT AHEAD Veh Act:

Veh Type: PASSENGER CAR

Age: Gender:

> Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED Unit 2

STRAIGHT AHEAD

PASSENGER CAR

NORMAL

VISION OBSCURED - SUN OR HEA

NOT SPECIFIED

Sys: 05-MSAS Crash ID: 140660056 **Date:** 01/28/2014 **Time:** 1015 Route: 24200140 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Speed Limit: 30 Surf Cond: DRY Diagram: RIGHT ANGLE Officer: Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 3.00

Unit 1

Trav Dir:

Veh Act: STOPPED TRAFFIC Veh Type: PASSENGER CAR

Age: 80 Gender: M

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Unit 2

STRAIGHT AHEAD

PASSENGER CAR

17 М

Ν

NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED Unit 3

EAST

STRAIGHT AHEAD PASSENGER CAR

000+00.783

902 NULL

> NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED

Crash ID: 140700101 **Date:** 02/09/2014 Time: 1830 Sys: 05-MSAS Route: 24200140 000+00.783 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Light Cond: DARK - STREET LIGHTS ON

Weather 1: CLEAR Weather 2: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

START TRAFFIC Veh Act:

Veh Type: SPORT UNTILITY VEHICLE

Age: Gender:

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Ε

Unit 2

STRAIGHT AHEAD

SPORT UNTILITY VEHICLE

NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED

Sys: 05-MSAS Crash ID: 140910119 **Date:** 02/22/2014 **Time:** 1220 Route: 24200113 County: BLUE EARTH City: MANKATO

Severity: POSSIBLE INJURY First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: SLUSH Diagram: SIDESWIPE PASSING Light Cond: DAYLIGHT Officer:

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STRAIGHT AHEAD

Veh Type: SPORT UNTILITY VEHICLE

Age: 20 Gender: F

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Unit 2

Ε

SLOWING TRAFFIC VAN OR MINIVAN

902 NULL

> NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED

Unit 3

001+00.770

001+00.770

Crash ID: 140910177 **Date:** 02/28/2014 Time: 2115 Sys: 05-MSAS Route: 24200113 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: ICE/PACKED SNOW

Light Cond: DARK - STREET LIGHTS ON

Weather 1: CLOUDY

Weather 2: NOT SPECIFIED

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: SIDESWIPE OPPOSING

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir:

STRAIGHT AHEAD Veh Act:

Veh Type: PASSENGER CAR 36 Age:

Gender:

Cont Fact 2

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED

NOT SPECIFIED

Unit 2

STRAIGHT AHEAD PASSENGER CAR

NOT SPECIFIED NOT SPECIFIED NOT SPECIFIED Unit 3

08/01/2016 Page 8 of 12 MnCMAT 1.0.0

Sys: 05-MSAS **Crash ID:** 142170153 **Date:** 08/05/2014 **Time:** 1336 Route: 24200113 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION

Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 40

Surf Cond: DRY Diagram: REAR END Officer: Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STRAIGHT AHEAD

Veh Type: PASSENGER CAR

Age: 32 Gender: F

Cond: UNDER THE INFLUENCE

Cont Fact 1 FOLLOWING TOO CLOSELY

Cont Fact 2 CHEMICAL IMPAIRMENT Unit 2

STRAIGHT AHEAD

PICKUP TRUCK

50 М

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

001+00.770

Crash ID: 142810021

Date: 10/07/2014

City: MANKATO

Sys: 05-MSAS

Route: 24200113 001+00.770

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY

Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Light Cond: DAYLIGHT

County: BLUE EARTH

Weather 1: CLOUDY

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 40

Time: 1211

Diagram: SIDESWIPE OPPOSING

Officer:

Reliability: CONFIDENT

of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: LEFT TURN

Veh Type: FARM EQUIPMENT

> 20 Age:

Gender:

Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

NOT SPECIFIED Cont Fact 2

Unit 2

STRAIGHT AHEAD

PASSENGER CAR

F

NORMAL

DISTRACTION

NOT SPECIFIED

Unit 3

08/01/2016 Page 9 of 12 MnCMAT 1.0.0

Sys: 05-MSAS **Crash ID:** 143460053 **Date:** 11/07/2014 **Time:** 0938 Route: 24200140 County: BLUE EARTH City: MANKATO

Severity: PROPERTY DAMAGE First Event: NOT SPECIFIED Road Type: NOT SPECIFIED To Junction: NOT SPECIFIED Road Char: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Speed Limit: 30 Surf Cond: DRY Diagram: RIGHT ANGLE Officer: Light Cond: DAYLIGHT Weather 1: CLOUDY

Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: S

Veh Act: STRAIGHT AHEAD Veh Type: PASSENGER CAR

Age: 57 Gender: M

Cond: NOT SPECIFIED Cont Fact 1 NOT SPECIFIED Cont Fact 2 NOT SPECIFIED Unit 2

STRAIGHT AHEAD

PASSENGER CAR

19

NOT SPECIFIED NOT SPECIFIED

NOT SPECIFIED

Unit 3

000+00.782

Crash ID: 152070097 **Date:** 07/26/2015 **Time:** 0327 Sys: 05-MSAS Route: 24200113 001+00.770 County: BLUE EARTH City: MANKATO

Severity: POSSIBLE INJURY

Road Type: 2 LANES UNDIV 2 WAY Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: WET

Light Cond: DARK - STREET LIGHTS ON

Weather 1: RAIN

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT # of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: STRAIGHT AHEAD

PASSENGER CAR

32 Age:

Veh Type:

Gender:

Cond: NORMAL

Cont Fact 1 FAIL TO YIELD ROW

Cont Fact 2 NOT SPECIFIED Unit 2

STRAIGHT AHEAD

PASSENGER CAR

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Sys: 05-MSAS **Crash ID:** 152480105 **Date:** 09/04/2015 **Time:** 1940 Route: 24200140 County: BLUE EARTH City: MANKATO

Severity: POSSIBLE INJURY First Event: ON ROADWAY

Road Type: 4 6 LANES UNDIV 2 WAY To Junction: 4-LEGGED INTERSECTION Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/PERDESTRIAN

Surf Cond: WET

Light Cond: DARK - STREET LIGHTS ON

Weather 1: RAIN Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 1.00

Date: 12/28/2015

City: MANKATO

Unit 1

Trav Dir: Ν

Veh Act: LEFT TURN

Veh Type: PASSENGER CAR

Age:

NULL Gender:

> Cond: UNKNOWN

Cont Fact 1 UNKNOWN

Crash ID: 160280014

County: BLUE EARTH

Cont Fact 2 NOT SPECIFIED Unit 2

S

PEDESTRIAN IN CROSSWALK

Speed Limit: 40

Officer:

Diagram: RIGHT ANGLE

SKATER

19 М

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Sys: 05-MSAS

Unit 3

Route: 24200113 001+00.770

000+00.783

Severity: PROPERTY DAMAGE

Road Type: NOT SPECIFIED Road Char: NOT SPECIFIED

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: SNOW

Light Cond: DARK - STREET LIGHTS ON

Weather 1: SNOW

Weather 2: NOT SPECIFIED

First Event: NOT SPECIFIED

To Junction: NOT SPECIFIED Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Time: 1946

Diagram: RIGHT ANGLE

Officer:

Reliability: CONFIDENT

of Vehicles: 2.00

Unit 1

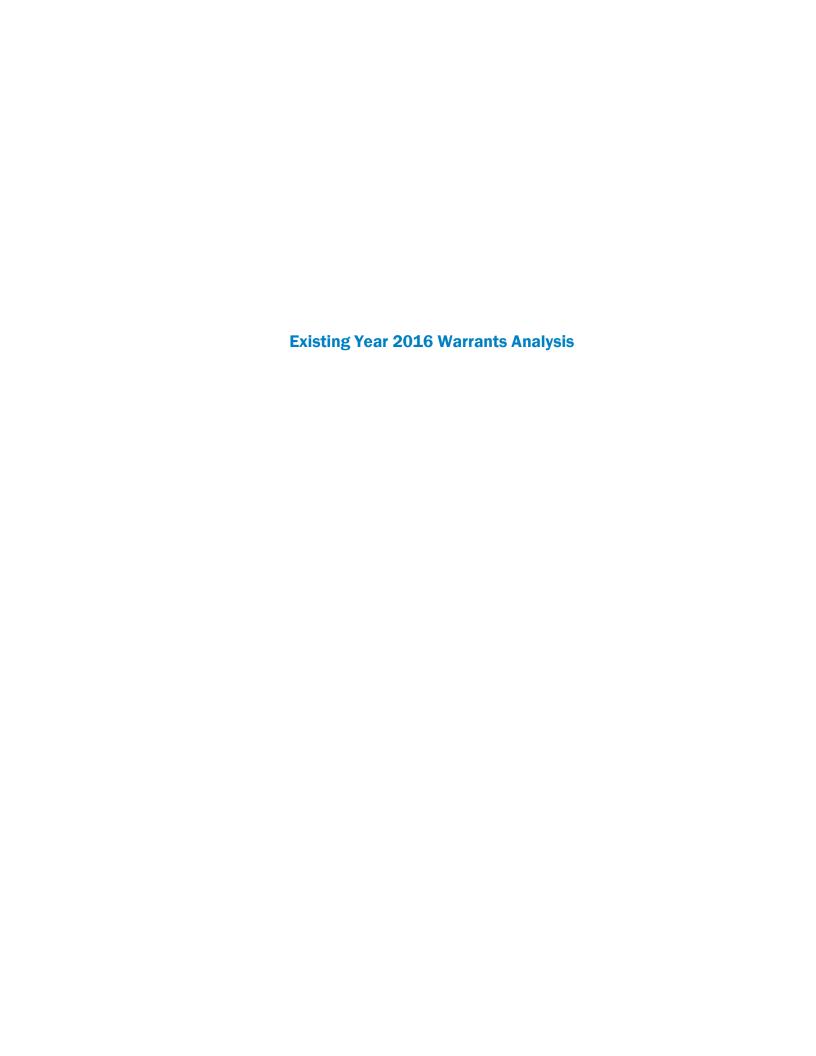
Trav Dir:

STRAIGHT AHEAD Veh Act:

Veh Type: SPORT UNTILITY VEHICLE

NOT SPECIFIED

Age: Gender:


Cont Fact 1

Cond: NOT SPECIFIED

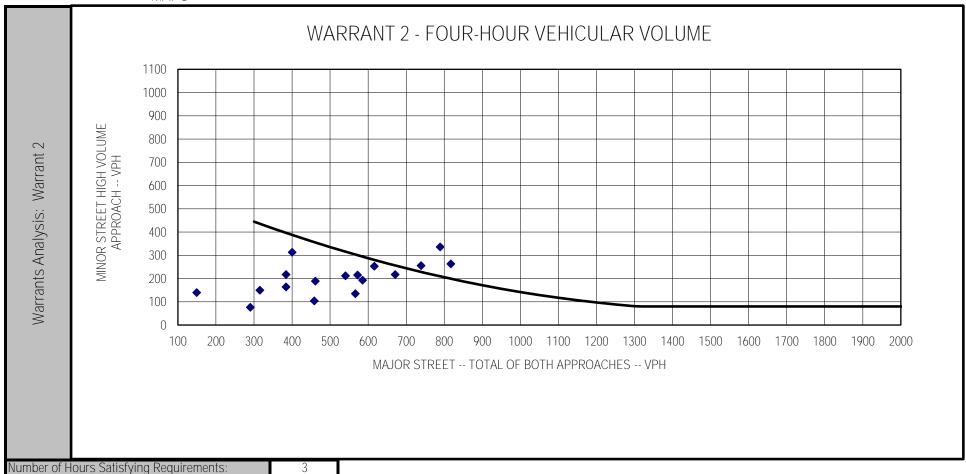
Cont Fact 2 NOT SPECIFIED Unit 2

Unit 3

Selection Filter:		
WORK AREA: Statewide - FILTER: CRASH_YEAR('2011','2012' APPLIED	','2013	9','2014','2015'), TRAFFIC_CONTROL_DEVICE_CODE('03') - SPATIAL FILTER
Analyst:		Notes:
Luka lamas		

WARRANTS ANALYSIS Existing Year 2016

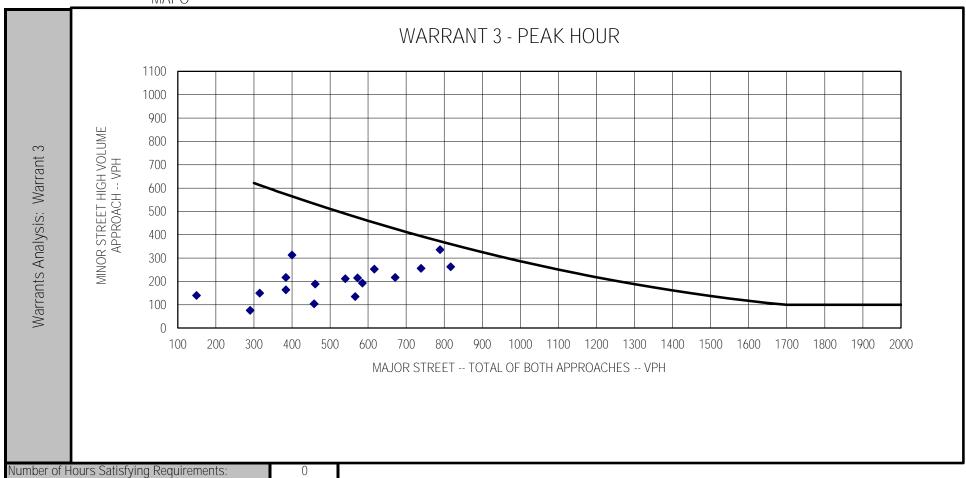
Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO


br no	Location: MAPO	Speed (mph)	Lanes	Approach
ound	Date: 9/28/2016	40	2 or more	Major Approach 1: Eastbound Balcerzak Drive
grou	Analysis Prepared By: Luke James	40	2 or more	Major Approach 3: Westbound Balcerzak Drive
Backgr	Population Less than 10,000: No	30	1	Minor Approach 2: Northbound Pohl Road
Ba	Seventy Percent Factor Used: No	30	1	Minor Approach 4: Southbound Pohl Road

		Major	Major	Total	Warra	nt Met	Minor	Minor	Largest	Warra	nt Met	Met Sam	ne Hours	Comb	ination	MWS	A (C)
	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	150	75	Condition A	Condition B	А	В	300	200
10	6 - 7 AM	92	57	149			140	46	140		Χ						
and	7 - 8 AM	187	213	400			313	118	313	Χ	Χ					Χ	Χ
B	8 - 9 AM	155	229	384			217	130	217	Χ	Χ					Χ	Χ
<u> </u>	9 - 10 AM	137	178	315			150	73	150	Χ	Χ					Χ	Χ
<u> </u>	10 - 11 AM	173	211	384			164	92	164	Χ	Χ					Χ	Χ
ıts	11 - 12 AM	217	244	461			189	121	189	Χ	Χ					Χ	Χ
Warrants	12 - 1 PM	261	311	572			215	135	215	Χ	Χ			Χ		Χ	Χ
/ar	1 - 2 PM	245	295	540			212	123	212	Χ	Χ			Χ		Χ	Χ
	2 - 3 PM	313	303	616	Χ		253	150	253	Χ	Χ	Χ		Χ		Χ	Χ
Warrants Analysis:	3 - 4 PM	340	399	739	X		256	158	256	X	X	X		X	X	X	X
<u>S</u>	4 - 5 PM	390	399	789	Χ		336	183	336	Χ	Χ	Χ		Χ	Χ	Χ	Χ
na	5 - 6 PM	330	487	817	X		263	201	263	X	X	X		X	Χ	X	X
4	6 - 7 PM	261	410	671	Χ		217	142	217	X	X	Χ		X		X	X
ants	7 - 8 PM	231	354	585			193	153	193	Χ	X			X		X	X
ILLO	8 - 9 PM	215	351	566			135	125	135		X			Χ		X	Χ
8	9 - 10 PM	174	284	458			104	91	104		X					Χ	
	10 - 11 PM	95	195	290			76	64	76		Χ			0	0		,
		\ \						N.A. 1	11	Г -		5	0	9	3		4
	Μ/		and Descript				Hours	s Met	Hours	Require	ed			et/Not Me	et		
± ≥	Warrant 1A:		nicular Volume				5			8				Not Met			
Warrant Summary		Interruption o		Hallic			0			8				Not Met			
/arr		Combination					3			8				Not Met			
Su S	Warrant 2:		ehicular Volum	ie			3			4				Not Met			
	Warrant 3B: MWSA (C):	Peak Hour	o Applications	Conditi	on C		14	1		8			Met - Multiwa	Not Met	\nnlicatio	nc	
	IVIVVSA (C):	wulliway 510	u Applications	Contaiti	UII C			+		0			iviet - Iviuitiwa	ay 310p F	Applicatio	112	

Existing Year 2016

Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO



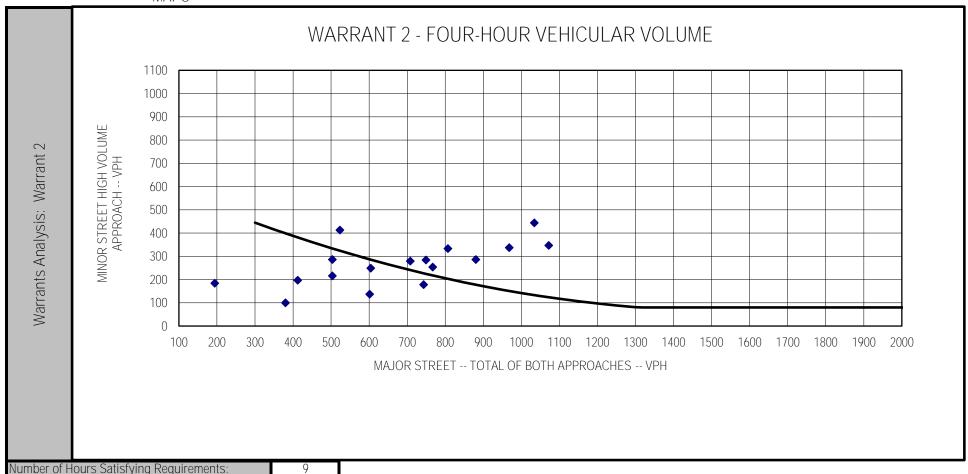
Notes: 1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Existing Year 2016

Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO

Notes:

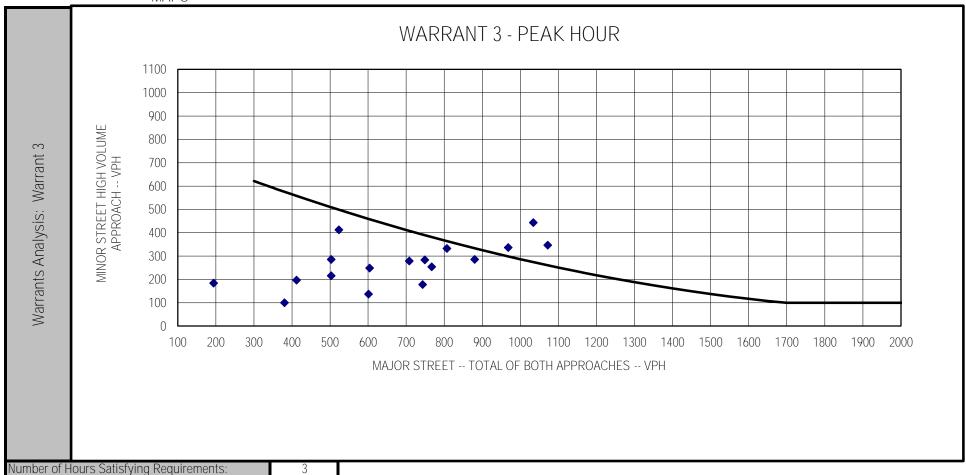
1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.



Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO

pr u	Location: MAPO	Speed (mph)	Lanes	Approach
roun	Date: 9/28/2016	40	2 or more	Major Approach 1: Eastbound Balcerzak Drive
gra	Analysis Prepared By: Luke James	40	2 or more	Major Approach 3: Westbound Balcerzak Drive
Backgr	Population Less than 10,000:	30	1	Minor Approach 2: Northbound Pohl Road
Ba	Seventy Percent Factor Used: No	30	1	Minor Approach 4: Southbound Pohl Road

		Major	Major	Total	Warra	nt Met	Minor	Minor	Largest	Warra	nt Met	Met Sam	ne Hours	Combi	ination	MWS	A (C)
()	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	150	75	Condition A	Condition B	А	В	300	200
7	6 - 7 AM	119	75	194			184	54	184	Χ	Χ						Χ
and	7 - 8 AM	242	281	523			413	139	413	Χ	Χ			Χ		Χ	Χ
B B	8 - 9 AM	201	302	503			286	153	286	Χ	Χ			Χ		Χ	Χ
	9 - 10 AM	177	235	412			197	86	197	Χ	Χ					Χ	Χ
₹	10 - 11 AM	224	279	503			216	109	216	Χ	Χ			Χ		Χ	Χ
t S	11 - 12 AM	282	322	604	Χ		249	142	249	Χ	Χ	Χ		Χ		Χ	Χ
Warrants	12 - 1 PM	339	410	749	Χ		284	159	284	Χ	Χ	Χ		Χ	Χ	Χ	Χ
arr	1 - 2 PM	319	389	708	Χ		279	145	279	Χ	Χ	Χ		Χ		Χ	Χ
>	2 - 3 PM	407	400	807	Χ		333	176	333	Χ	Χ	Χ		Χ	Χ	Χ	Χ
<u></u>	3 - 4 PM	442	526	968	Χ	Χ	337	186	337	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Analysis:	4 - 5 PM	507	527	1034	Χ	Χ	444	215	444	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
na	5 - 6 PM	429	643	1072	Χ	Χ	347	237	347	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
\prec	6 - 7 PM	339	541	880	Χ		286	167	286	Χ	Χ	Χ		Χ	Χ	Χ	Χ
nts	7 - 8 PM	300	467	767	Χ		254	180	254	Χ	Χ	Χ		Χ	Χ	Χ	Χ
rra	8 - 9 PM	280	463	743	Χ		178	148	178	Χ	Χ	Χ		Χ	Χ	Χ	Χ
Warrants	9 - 10 PM	226	375	601	Χ		137	107	137		Χ			Χ		Χ	Χ
	10 - 11 PM	123	257	380			100	76	100		Χ					Χ	
												10	3	14	8	1	5
			and Descript				Hours		Hours	Require	ed			et/Not Me			
+ >		Minimum Vel					1()		8			Met - War		Satisfied		
Warrant Summary		Interruption o		Traffic			3			8				Not Met			
arr		Combination					8			8			Met - War				
NS N	Warrant 2:		ehicular Volum	ie			9			4			Met - Wa				
		Peak Hour		0 1111			3	_]			Met - War				
	MWSA (C):	Multiway Sto	o Applications	Conditi	on C		15)		8			Met - Multiwa	ay Stop <i>F</i>	Applicatio	ns	


Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO

Notes: 1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Forecasted Year 2036

Balcerzak Drive at Pohl Road Intersection Control Evaluation Studies MAPO

Notes:

1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

All-Way Stop Control (Existing)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.1
Denied Del/Veh (s)	0.1	0.1	0.6	0.4	0.4
Total Delay (hr)	0.5	0.6	0.9	0.3	2.3
Total Del/Veh (s)	8.9	9.0	8.9	7.0	8.6
Stop Delay (hr)	0.2	0.3	0.5	0.2	1.2
Stop Del/Veh (s)	3.9	4.0	5.6	3.9	4.5
Total Stops	203	253	349	142	947
Stop/Veh	1.00	0.99	0.99	1.00	0.99

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	LT	TR	LT	TR	L	TR	L	TR
Maximum Queue (ft)	73	56	96	63	82	182	31	85
Average Queue (ft)	41	24	45	22	23	67	7	40
95th Queue (ft)	63	48	75	51	63	128	28	66
Link Distance (ft)	966	966	966	966		960		960
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)					100		100	
Storage Blk Time (%)						3		0
Queuing Penalty (veh)						1		0

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.1
Denied Del/Veh (s)	0.1	0.2	0.6	0.7	0.3
Total Delay (hr)	1.2	1.6	0.7	0.5	4.1
Total Del/Veh (s)	11.6	12.6	8.8	9.1	10.9
Stop Delay (hr)	0.6	0.9	0.5	0.3	2.3
Stop Del/Veh (s)	5.7	6.9	6.0	5.8	6.2
Total Stops	379	445	303	210	1337
Stop/Veh	0.99	1.00	0.99	1.00	1.00

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	LT	TR	LT	TR	L	TR	L	TR	
Maximum Queue (ft)	112	87	155	97	44	133	51	102	
Average Queue (ft)	58	38	76	36	19	65	20	52	
95th Queue (ft)	94	68	125	69	46	107	48	84	
Link Distance (ft)	966	966	966	966		960		960	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)					100		100		
Storage Blk Time (%)						1		0	
Queuing Penalty (veh)						0		0	

All-Way Stop Control (Balcerzak Three-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.1	0.1	0.0	0.2
Denied Del/Veh (s)	0.5	1.6	0.7	0.4	0.9
Total Delay (hr)	0.6	0.6	0.9	0.3	2.3
Total Del/Veh (s)	10.2	8.8	8.9	7.1	8.9
Stop Delay (hr)	0.3	0.3	0.5	0.2	1.2
Stop Del/Veh (s)	4.6	3.9	5.6	4.1	4.7
Total Stops	204	256	343	133	936
Stop/Veh	1.00	1.00	0.99	0.99	0.99

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	33	92	69	89	49	157	31	82
Average Queue (ft)	12	47	34	43	23	69	8	42
95th Queue (ft)	36	77	57	73	48	119	30	69
Link Distance (ft)		966		966		966		966
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	200		200		100		100	
Storage Blk Time (%)						3		0
Queuing Penalty (veh)						1		0

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.2	0.0	0.0	0.4
Denied Del/Veh (s)	0.5	1.8	0.6	0.7	1.0
Total Delay (hr)	1.8	1.4	0.9	0.6	4.8
Total Del/Veh (s)	17.0	11.6	11.0	10.1	12.8
Stop Delay (hr)	1.1	8.0	0.7	0.4	3.0
Stop Del/Veh (s)	10.4	6.1	8.2	6.8	7.9
Total Stops	377	445	301	214	1337
Stop/Veh	0.99	0.99	0.99	1.00	0.99

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	37	201	91	126	66	177	56	122
Average Queue (ft)	16	89	48	64	20	73	21	56
95th Queue (ft)	41	158	76	105	53	130	49	98
Link Distance (ft)		966		966		966		966
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	200		200		100		100	
Storage Blk Time (%)		1				3		1
Queuing Penalty (veh)		0				1		0

Traffic Signal Control (Balcerzak Four-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.1
Denied Del/Veh (s)	0.1	0.1	0.7	0.4	0.4
Total Delay (hr)	0.4	8.0	1.0	0.3	2.6
Total Del/Veh (s)	8.0	11.3	10.5	9.0	10.0
Stop Delay (hr)	0.3	0.5	0.7	0.2	1.7
Stop Del/Veh (s)	4.8	7.3	7.1	6.6	6.6
Total Stops	86	141	219	79	525
Stop/Veh	0.44	0.55	0.62	0.59	0.56

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	LT	TR	LT	TR	L	TR	L	TR	
Maximum Queue (ft)	92	50	148	68	83	187	31	108	
Average Queue (ft)	42	13	61	13	24	83	7	43	
95th Queue (ft)	79	39	110	43	61	147	27	83	
Link Distance (ft)	966	966	966	966		960		960	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)					100		100		
Storage Blk Time (%)					0	4		0	
Queuing Penalty (veh)					0	2		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.1
Denied Del/Veh (s)	0.1	0.2	0.6	0.7	0.3
Total Delay (hr)	0.9	1.7	1.0	8.0	4.5
Total Del/Veh (s)	8.9	13.8	12.0	14.5	12.1
Stop Delay (hr)	0.5	1.1	8.0	0.7	3.0
Stop Del/Veh (s)	5.1	8.8	9.1	11.3	8.2
Total Stops	159	269	196	142	766
Stop/Veh	0.43	0.61	0.65	0.67	0.58

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	LT	TR	LT	TR	L	TR	L	TR
Maximum Queue (ft)	126	79	186	145	59	167	53	151
Average Queue (ft)	65	26	97	30	19	79	21	69
95th Queue (ft)	107	63	152	85	50	138	50	123
Link Distance (ft)	966	966	966	966		960		960
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)					100		100	
Storage Blk Time (%)					0	4		2
Queuing Penalty (veh)					0	1		1

Traffic Signal Control (Balcerzak Three-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.1	0.1	0.0	0.2
Denied Del/Veh (s)	0.5	1.6	0.7	0.4	0.8
Total Delay (hr)	0.5	8.0	1.0	0.4	2.7
Total Del/Veh (s)	9.5	11.2	10.5	9.3	10.3
Stop Delay (hr)	0.3	0.5	0.7	0.3	1.8
Stop Del/Veh (s)	5.6	7.7	7.2	6.9	7.0
Total Stops	97	138	214	79	528
Stop/Veh	0.48	0.55	0.61	0.56	0.56

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	TR	L	TR	L	TR	L	TR
Maximum Queue (ft)	41	114	88	118	70	195	40	102
Average Queue (ft)	9	49	40	47	21	84	9	43
95th Queue (ft)	32	93	77	90	56	147	33	84
Link Distance (ft)		966		966		966		966
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	200		200		100		100	
Storage Blk Time (%)						4		0
Queuing Penalty (veh)						2		0

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.2	0.0	0.0	0.4
Denied Del/Veh (s)	0.5	1.8	0.6	0.7	1.0
Total Delay (hr)	2.0	1.4	1.3	0.9	5.5
Total Del/Veh (s)	18.4	11.1	15.3	16.1	14.9
Stop Delay (hr)	1.3	0.9	1.0	8.0	3.9
Stop Del/Veh (s)	12.0	7.2	12.1	13.0	10.6
Total Stops	242	239	212	145	838
Stop/Veh	0.63	0.54	0.71	0.69	0.63

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	50	221	120	161	72	189	79	145	
Average Queue (ft)	13	119	58	65	23	92	23	69	
95th Queue (ft)	40	195	100	125	58	159	58	123	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	200		200		100		100		
Storage Blk Time (%)		1		0	0	6	0	3	
Queuing Penalty (veh)		0		0	0	2	0	1	

Roundabout Control (HCS)

						ROU	INDABO	UT REP	ORT								
								I									
Agency or Co. S Date Performed 8 Time Period A	uke Ja	nsultii 6	ng Grou	ıp, Inc	-			Site Intersection Intersection E/W Street N/S Street Analysis Project	etion eet N eet Na s Yea	ame	Balce Balce			hl Ro	ad		
Project Description:																	
Volume Adjustmer	nt and	Site	Chara	cteris	tics	;											
			E	В			V	/B				NB				SB	
		L	T	R	U	L	Т	R	U	L	_ T	R	U	L	Т	R	U
Number of Lanes (N)		0	1	0		0	1	0		C) 1	0		0	1	0	
Lane Assignment				L	TR			LTF	7			L7	TR				LTR
Right-Turn Bypass			No	пе			No	ne			N	lone			1	None	
Conflicting Lanes			1				-	1				1				1	
Volume (V), veh/h		15	165	20	0		160	5	0	3		_	0	10	100	_	0
Heavy Veh. Adj. (f _{HV}),	, %	2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2
Pedestrians Crossing			0				()				0				0	
Critical and Follow	-Up H	leadu	yay Ao	justn	ent												
				E				WB				NB	ı			SB	ı
			Left		Right By		-	Right Bypa					Bypass		-+	Right	Bypass
Critical Headway (sec)			5.1929		-	5.1929		5.1929	5.19	929	5.1929		5.1929	+	-	5.1929	5.1929
Follow-Up Headway (s			3.1858	3.18	358		3.1858	3.1858			3.1858	3.1858		3.18	58 3	3.1858	
Flow Computation	s		1				I				1						
				T _D		<u> </u>		WB	I _D			NB	I _D	+	, T	SB	l _D
Circulating Flow (V _c),	nc/h		Left	Rig		Bypass	Left	Right	Вур	ass	Left		Bypass	Le	π	Right	Bypass
Exiting Flow (V_{ex}) , pc/				31				229 229				193 199				291 214	
Entry Flow (V_e) , pc/h	<u>''</u>			20				260	I			352	1	-	1	143	l
Entry Volume veh/h				20				255				345			\dashv	143	
Capacity and v/c R	Pation			20				200				345				140	
Capacity and v/c K	alios		ĺ	E	 R			WB				NB				SB	
			Left	Rig		Bypass	Left	Right	Вур	ass	Left		Bypass	Le	ft	Right	Bypass
Capacity (c _{PCE}), pc/h			2011	92				898	2,7			931	- J pass	1	+	845	2) 0000
Capacity (c), veh/h				90				881				913				828	
v/c Ratio (X)				0.2	22			0.29				0.38				0.17	
Delay and Level of	Servi	ice							<u> </u>				<u> </u>	<u> </u>			l
				E	 В			WB				NB				SB	
			Left	Rig	ght	Bypass	Left	Right	Вур	ass	Left	Right	Bypass	Le	ft	Right	Bypass
Lane Control Delay (d), s/vel	า		6.		-		7.2	<u> </u>			8.2		1		6.1	· ·
Lane LOS				A				Α				Α		A		Α	
Lane 95% Queue				0.	8			1.2				1.8			\top	0.6	
Approach Delay, s/veh	า			6.2	22			7.19	-			8.21	•	6.08			•
Approach LOS, s/veh				A				Α				Α		Α			
Intersection Delay, s/v	eh									7.	19						
Intersection LOS										A	4						

Generated: 8/5/2016 2:34 PM

							1									
General Information							Site Int		tio		. =	=				
Analyst Luke of Agency or Co. SRF Co. Date Performed 8/5/20 Time Period P.M. F Peak Hour Factor 1.00	Consultii 16	ng Grou	p, Inc.		Intersection E/W Street Name N/S Street Name Analysis Year Project ID Balcerzak Drive Balcerzak Drive Pohl Road Analysis Year 2016 Project ID Palcerzak Drive Balcerzak Drive Pohl Road Pohl Road Pohl Road Pohl Road											
Project Description:							i roject			3243						
Volume Adjustment an	d Site	Charac	teristic	cs												
		EE				W	/B				NB			SI	<u></u> В	
	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		0	1	0		0	1	0	
Lane Assignment			LTR				LTF	?		•	Lī	TR			ı	LTR
Right-Turn Bypass		Non	е			No	ne			٨	lone			No	ne	
Conflicting Lanes		1					1				1			1		
Volume (V), veh/h	20	330	25	0	170	270	5	0	30	130	145	0	30	140	40	0
Heavy Veh. Adj. (f _{HV}), %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing		0				()				0			C)	
Critical and Follow-Up	Headu	yay Adj	iustme	nt												
			EB				WB				NB				SB	
		Left	Right	Вур	ass	Left	Right	Вура	iss	Left	Right	Bypass		_	ght	Bypass
Critical Headway (sec)		5.1929	5.1929	5.19	929	5.1929	5.1929	5.192	_		5.1929	5.1929	5.192		929	5.1929
Follow-Up Headway (sec)		3.1858	3.1858	3		3.1858	3.1858			3.1858	3.1858		3.185	3.1	858	
Flow Computations		1											1			
			EB				WB				NB			- 5	SB	
0: 1: 5: 0: 1		Left	Right	Вур	ass	Left	Right	Вура	ISS	Left	Right	Bypass	Left		ght	Bypass
Circulating Flow (V _c), pc/h			347				184		_		388				79	
Exiting Flow (V _{ex}), pc/h			515				347	1	_		158	1			42	ı
Entry Flow (V _e), pc/h			383	_			454		_		311				14	
Entry Volume veh/h			375				445				305			2	10	
Capacity and v/c Ratios	5	1	ГР				WB		-1		ND		1		 SB	
		Left	EB Right	Вур	200	Left	Right	Byps		Left	NB	Bypaga	Left	_		Bypasi
Capacity (c _{PCE}), pc/h		Leit	799	Бур	ass	Leit	940	Вура	155	Leit	Right 767	Bypass	Leit	+	ght 00	Bypass
Capacity (c), veh/h			783	+			922	1	-		752				86	
v/c Ratio (X)			0.48	-			0.48		_		0.41			_	31	
Delay and Level of Ser	vice		00				0.70				••••			1		
_ 5.4, 4.14 20101 01 001			EB				WB		T		NB				 SB	
		Left	Right	Bvn	ass	Left	Right	Вура	ıss	Left	Right	Bypass	Left	_	ght	Bypass
Lane Control Delay (d), s/ve	eh		11.2	1-76			9.9	1,50			10.0	7,5200		_	.1	7,500
Lane LOS			В				A		\dashv		В			+	<u></u> 4	
Lane 95% Queue			2.6				2.7		1		2.0			+-	.3	
Approach Delay, s/veh			11.16				9.91		\dashv		10.04				07	I
Approach LOS, s/veh			В				Α		\dashv		В				A	
Intersection Delay, s/veh						<u> </u>			10.	16			1			
Intersection LOS		 							В							

Roundabout Control (RODEL)

RODEL											_ D ×
8:9:10	3	9	243 POH	L BALCE	RZEK 2	016 5	60 (:L			7
E (m) L' (m) U (m)	4.0 40.0	00 40.00	4.00 40.00 3.65	4.00 40.00 3.65			T	ME PE	I CE	mir mir OD mir	15
RAD (m)	20.0	30 20.00	20.00	20.00			T		TSC	\$/hi	
PHI (d)	30.0		30.00	30.00			FI	OW PI		mir	
DIA (m) GRAD SEI		00 45.00 0 0	45.00 0	45.00 0				OW PE	PE p	cu/ve] /op/pr	n VEH n AM
SB POHL	PCU RD 1.02	FLOWS (1s 30 10		2nd etc		FLOF 1.00	CL		W RAT	10 0.75	FLOW TIME 15 45 75
	RZ 1.02	20 16		Ø			50	0.75			
NB POHL I	RD 1.02	135 17	5 35	Ø		1.00	50	0.75	1.125	0.75	15 45 75
WB BALCE	RZ 1.02	5 16	0 90	0		1.00	50	0.75	1.125	0.75	15 45 75
				MODE 2			_				
FLOW	vel		200	345	255						
CAPACITY			1079	1084	1066				l ê	UDEL S	
MAX DELA	AY mins AY mins		0.07 0.09	0.08 0.11	0.07 0.09				l li	O S EH HRS	A 1.1
AUE QUE			0.07 0	0.II	0.07 0					OST S	17.1
MAX QUE			Ø	$ar{\mathbf{i}}$	0						2
F1mode l	F2direct	t F3peak	Ctr1F3	rev F4	fact F	6stat	s	F8ecc	n F9	prnt	F10run Es

RODEL				_
8:9:10	92	43 POHL BALCE	RZEK 2016 50 CL	8
L' (m) 40		4.00 4.00 40.00 40.00	TIME PERIC	E min 15
RAD (m) 20		3.65 3.65 20.00 20.00 30.00 30.00	TIME COST FLOW PERI	ERIOD min 15 75 \$/hr 15.00 OD min 15 75
		30.00 30.00 45.00 45.00	PLOW TYPE FLOW PEAK	pcu/veh VEH
LEG NAME PCI	U FLOWS (1st	exit 2nd etc	U> FLOF CL FLOW	RATIO FLOW TIME
SB POHL RD 1.0 EB BALCERZ 1.0 NB POHL RD 1.0	02 25 330	20 0	1.00 50 0.75 1.	125
WB BALCERZ 1.0			1.00 50 0.75 1.	
		MODE 2		
FLOW	veh 210	375 305	445	
	veh 210 veh 935	1005 983	1090	AUDEL s 5.4
	ins 0.08	0.09 0.09	0.09	L O S A
	ins 0.11	0.13 0.12	0.12	ÜEH HRS 2.0
	veh 0	1 0	1	COST 5 29.9
	veh 0	$\tilde{1}$	$\overline{\mathbf{i}}$	
F1mode F2dire		CtrlF3rev F4	fact F6stats F8econ	F9prnt F10run Esc

()	ROD	EL															_	
	8	9:10			92	43 POH	L BA	LCE	ERZEK 2	2016 8	35 (CL						7
	Į,	(m) (m) (m)	4.6 40.6 3.6	0 40 5 3	. 00 . 00 . 65	4.00 40.00 3.65	40. 3.	65			T I T I RI	ME	TS	CE PERI		1	1 15 7	
	RAD	(m)	20.0		. 00	20.00	20.					J.	COS	IOD	\$/h:		15.9	
	PHI	(d) (m)	30.0 45.0		. 00 . 00	30.00 45.00	30. 45.				180 181	LON	PER TYP	E n	mir [cu/ve		15 7 VE	
		SEP	13.6	0	0	13.00	15.	Ø			F	LOW	PEA	Kam	op/pi			М
SI EI NI WI	3 Ba 3 PC	NAME OHL RD ALCERZ OHL RD ALCERZ	1.02	FLOWS 30 20 135 5	(1st 100 165 175 160	10 15 35	2nd 0 0 0 0	eto	(U	FLOF 1.00 1.00 1.00 1.00		0.7 0.7 0.7	75 1 75 1	.125 .125 .125	0.75	15 15	45 45 45	75 75
							MODE	2										
	CAPA	DELAY DELAY	vel vel mins	(0	140 331 .09	200 876 0.09	3 8 0.	45 81 11	255 863 0.10	}]				L	UDEL S O S EH HRS			.9 A
	IHX IVE 1AX	QUEUE QUEUE	mins vel vel		.11 0 0	0.11 0 0	Ю.	15 1 1	0.13 0 0)					OST S	5	23	.0
F1r	no de	F2d	lirect	F3pe		Ctr1F3	rev	F4		6stat	ts	F8e	con	F9	prnt	F10	drun	Esc

RODEL				_ X
8:9:10	9243	POHL BALCERZEK	2016 85 CL	8
E (m) 4	.00 4.00 4	1.00 4.00 1.00 40.00	TIME PERIOD TIME SLICE	min 90 min 15
U (m) 3		3.65	RESULTS PERIOI	
RAD (m) 20	1.00 20.00 20	0.00 20.00	TIME COST	\$/hr 15.00
		30.00	FLOW PERIOD	min 15 75
		5.00 45.00	FLOW TYPE pct	ı∕veh VEH
GRAD SEP	0 0	0 0	FLOW PEAK am/c	p∕pm PM
LEG NAME PCU SB POHL RD 1.0 EB BALCERZ 1.0 NB POHL RD 1.0 WB BALCERZ 1.0	02 40 140 02 25 330 02 145 130	exit 2nd etcU> 30 0 20 0 30 0 170 0	1.00 85 0.75 1.125 0).75 15 45 75).75 15 45 75).75 15 45 75
WD DREGERE 1.0	3 210	MODE 2	1.00 03 0.73 1.123 6	7.13 13 13 13
		375 305 44		
		802 780 88		EL s 7.8
		0.12 0.1		O S A
		0.17 0.1	9 UEI 1 COS	
	eh 0 eh 0	1 1	COS	ST \$ 43.4
F1mode F2dire		rlF3rev F4fact	F6stats F8econ F9pi	nt F10run Esc
rimoue rzuire	cc rapean cc	FIFSTED FIREC	rostats rocton rypr	ne rierun Esc

All-Way Stop Control (No Build)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.1
Denied Del/Veh (s)	0.1	0.2	0.7	0.4	0.4
Total Delay (hr)	8.0	1.1	3.0	0.4	5.3
Total Del/Veh (s)	10.4	12.4	22.7	8.6	15.4
Stop Delay (hr)	0.4	0.6	2.6	0.3	3.9
Stop Del/Veh (s)	5.1	7.1	19.9	5.4	11.3
Total Stops	264	326	472	168	1230
Stop/Veh	1.00	1.00	1.01	0.99	1.00

Movement	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	LT	TR	LT	TR	L	TR	L	TR
Maximum Queue (ft)	88	62	151	110	200	494	31	101
Average Queue (ft)	47	30	62	29	43	133	7	47
95th Queue (ft)	74	55	117	67	139	372	29	77
Link Distance (ft)	966	966	966	966		960		960
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)					100		100	
Storage Blk Time (%)					0	19		0
Queuing Penalty (veh)					0	11		0

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.2
Denied Del/Veh (s)	0.1	0.2	0.7	0.7	0.4
Total Delay (hr)	2.3	3.8	1.8	0.9	8.7
Total Del/Veh (s)	16.9	22.1	15.5	12.4	17.8
Stop Delay (hr)	1.5	2.7	1.4	0.6	6.3
Stop Del/Veh (s)	10.7	16.1	12.6	9.2	12.8
Total Stops	495	627	406	248	1776
Stop/Veh	1.00	1.02	0.99	1.00	1.01

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	LT	TR	LT	TR	L	TR	L	TR	
Maximum Queue (ft)	164	136	273	236	90	211	52	144	
Average Queue (ft)	83	53	131	82	29	101	24	64	
95th Queue (ft)	134	96	234	185	72	181	50	112	
Link Distance (ft)	966	966	966	966		960		960	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)					100		100		
Storage Blk Time (%)					0	12	0	2	
Queuing Penalty (veh)					0	5	0	1	

All-Way Stop Control (Balcerzak Three-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.1	0.1	0.0	0.3
Denied Del/Veh (s)	0.5	1.6	8.0	0.4	0.9
Total Delay (hr)	1.0	1.0	3.5	0.4	5.9
Total Del/Veh (s)	13.3	10.6	27.4	8.7	17.3
Stop Delay (hr)	0.5	0.5	3.2	0.3	4.5
Stop Del/Veh (s)	7.4	5.4	25.1	5.5	13.4
Total Stops	257	321	469	168	1215
Stop/Veh	1.00	0.99	1.01	0.99	1.00

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	42	157	82	112	173	531	33	102	
Average Queue (ft)	15	60	38	52	49	149	9	48	
95th Queue (ft)	40	112	63	87	152	421	33	80	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)						0			
Queuing Penalty (veh)						0			
Storage Bay Dist (ft)	200		200		100		100		
Storage Blk Time (%)		0			0	22		0	
Queuing Penalty (veh)		0			0	12		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	6.8	0.3	0.1	0.0	7.2
Denied Del/Veh (s)	50.1	1.8	0.7	0.7	14.9
Total Delay (hr)	26.6	3.1	4.0	1.0	34.7
Total Del/Veh (s)	196.5	18.9	34.6	13.9	71.4
Stop Delay (hr)	27.3	2.1	3.8	0.7	33.9
Stop Del/Veh (s)	201.1	12.9	32.7	10.6	69.7
Total Stops	335	589	416	250	1590
Stop/Veh	0.69	0.99	1.00	0.99	0.91

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	600	948	168	213	199	386	52	142	
Average Queue (ft)	179	692	69	99	49	161	22	67	
95th Queue (ft)	618	1151	123	171	152	337	49	111	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)		32							
Queuing Penalty (veh)		0							
Storage Bay Dist (ft)	500		200		100		100		
Storage Blk Time (%)		65	0	1		39		2	
Queuing Penalty (veh)		16	1	3		16		1	

Traffic Signal Control (Balcerzak Four-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.1
Denied Del/Veh (s)	0.1	0.2	0.8	0.4	0.4
Total Delay (hr)	0.7	1.3	2.3	0.5	4.8
Total Del/Veh (s)	9.9	14.2	17.7	10.7	14.2
Stop Delay (hr)	0.4	0.9	1.6	0.4	3.3
Stop Del/Veh (s)	6.2	9.6	12.6	8.1	9.8
Total Stops	125	198	329	91	743
Stop/Veh	0.48	0.61	0.70	0.57	0.61

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	LT	TR	LT	TR	L	TR	L	TR	
Maximum Queue (ft)	114	61	166	114	162	392	46	124	
Average Queue (ft)	54	21	78	23	35	137	8	50	
95th Queue (ft)	96	52	139	75	109	322	33	99	
Link Distance (ft)	966	966	966	966		960		960	
Upstream Blk Time (%)						0			
Queuing Penalty (veh)						0			
Storage Bay Dist (ft)					100		100		
Storage Blk Time (%)					0	13		1	
Queuing Penalty (veh)					0	7		0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.2
Denied Del/Veh (s)	0.1	0.2	0.6	0.7	0.4
Total Delay (hr)	1.5	3.9	1.7	1.1	8.2
Total Del/Veh (s)	11.0	23.3	15.1	15.5	16.8
Stop Delay (hr)	0.9	2.8	1.3	8.0	5.9
Stop Del/Veh (s)	6.7	16.8	11.3	12.3	12.0
Total Stops	231	458	275	164	1128
Stop/Veh	0.47	0.76	0.68	0.67	0.64

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	LT	TR	LT	TR	L	TR	L	TR	
Maximum Queue (ft)	156	124	283	249	112	234	77	183	
Average Queue (ft)	87	41	162	89	25	112	25	78	
95th Queue (ft)	137	89	263	210	64	192	59	141	
Link Distance (ft)	966	966	966	966		960		960	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)					100		100		
Storage Blk Time (%)					0	10		4	
Queuing Penalty (veh)					0	4		1	

Forecasted Year 2036 Detailed Operational Analysis Traffic Signal Control (Balcerzak Three-Lane)

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.0	0.1	0.1	0.0	0.3
Denied Del/Veh (s)	0.6	1.6	0.7	0.4	0.9
Total Delay (hr)	0.9	1.4	1.6	0.5	4.4
Total Del/Veh (s)	12.7	15.3	12.5	10.2	13.0
Stop Delay (hr)	0.6	1.0	1.1	0.4	3.0
Stop Del/Veh (s)	8.0	11.1	8.2	7.7	8.9
Total Stops	141	201	287	95	724
Stop/Veh	0.54	0.61	0.62	0.57	0.59

Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	55	164	137	149	160	262	49	121	
Average Queue (ft)	15	67	54	63	30	116	9	51	
95th Queue (ft)	42	128	105	120	90	210	35	98	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	200		200		100		100		
Storage Blk Time (%)		0		0	0	9	0	1	
Queuing Penalty (veh)		0		0	0	5	0	0	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.3	0.1	0.0	0.5
Denied Del/Veh (s)	0.6	1.8	0.7	0.7	1.0
Total Delay (hr)	3.2	2.4	2.9	1.6	10.0
Total Del/Veh (s)	22.8	14.7	24.8	23.1	20.6
Stop Delay (hr)	2.1	1.6	2.3	1.3	7.4
Stop Del/Veh (s)	14.9	10.0	20.0	19.5	15.1
Total Stops	334	343	332	179	1188
Stop/Veh	0.67	0.58	0.80	0.72	0.68

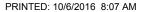
Movement	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	TR	L	TR	L	TR	L	TR	
Maximum Queue (ft)	59	316	183	203	199	300	90	171	
Average Queue (ft)	17	167	85	91	39	151	31	89	
95th Queue (ft)	47	266	145	163	114	254	72	150	
Link Distance (ft)		966		966		966		966	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	200		200		100		100		
Storage Blk Time (%)		4	0	0	0	24	0	7	
Queuing Penalty (veh)		1	2	1	0	10	0	2	

Roundabout Control (HCS)

					ROU	INDABO	UT REP	ORT								
General Information							Sito Int	forms	otio	n						
Analyst Luke J	Consultii 16	ng Grou	ıp, Inc.			Site Information Intersection Balcerzak Drive at Pohl Road E/W Street Name Balcerzak Drive N/S Street Name Pohl Road Analysis Year 2036 Project ID 9243										
Project Description:							,									
Volume Adjustment an	d Site	Chara	cterist	ics												
		E	3			V	/B				NB			SI	3	
	L	Т	R	U	L	Т	R	U	L	. T	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		0	1	0		0	1	0	
Lane Assignment			LTI	R	-		LTF	?				TR				LTR
Right-Turn Bypass		Nor	пе		+		ne				lone			No		
Conflicting Lanes	00	1	05		145		1 		4.5	- 1 005	1		40	1		
Volume (V), veh/h Heavy Veh. Adj. (f _{HV}), %	20	210	25 2	2	115	210	5 2	2	45 2		175 2	2	10	120 2	35 2	2
Pedestrians Crossing		2 0			12		<u> </u>				0	2	2	<u>-</u> 0		
Critical and Follow-Up	Hoodu			ont		•	,				0			-		
Critical and Follow-Op	пеаии	ay Au	<i>justini</i> EB				WB				NB				BB	
		Left	Righ		Bypass	Left	Right	Вура	200	Left	Right	Bypass	Left		ght	Bypas
Critical Headway (sec)		5.1929	-	_		5.1929		- · ·	_		5.1929	5.1929	+	_	929	5.1929
Follow-Up Headway (sec)			3.18	-		3.1858	3.1858		\rightarrow		3.1858	0	3.185	_		011020
Flow Computations		<u> </u>	Į.			Į										
•			EB				WB				NB			S	BB	
		Left	Righ	nt E	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	Ri	ght	Bypas
Circulating Flow (V _c), pc/h			249)			306				244			3	77	
Exiting Flow (V _{ex}), pc/h			403	3			296				265			20	65	
Entry Flow (V _e), pc/h			260	<u> </u>			337				464			10	68	
Entry Volume veh/h			255	5			330				455			10	65	
Capacity and v/c Ration	5								_							
			EB		_		WB	1_			NB	I_			B	
Canacity (a) no/h		Left	Righ	_	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	_	ght	Bypas
Capacity (c _{PCE}), pc/h			880				832				885				75 60	
Capacity (<i>c</i>), veh/h v/c Ratio (X)			0.30	-			816 0.40				867 0.52			_	22	
Delay and Level of Serv	,ioo		0.50				0.40				0.32			0.		
Delay allu Level Ol Ser	7168		EB				WB				NB			-	 ВВ	
		Left	Righ		Bypass	Left	Right	Вура	188	Left	Right	Bypass	Left	_	ght	Bypas
Lane Control Delay (d), s/ve	eh	2010	7.4	_	- , paoo		9.4	2,700	.00		11.3	2,7400		+	.1	2,000
Lane LOS			A	+			A				В			_	4	
Lane 95% Queue			1.2	\top			2.0				3.1			+-	.8	
Approach Delay, s/veh 7.39						9.40	-			11.26			_	13	·	
Approach LOS, s/veh			Α				Α				В			,	4	
Intersection Delay, s/veh						•			9.3	37			•			
Intersection LOS									Α							

0						۔ ا		•	4.							
Analyst Luke Company Analyst Superscript S	Consultii 16	ng Grou	p, Inc.			Site Information Intersection Balcerzak Drive at Pohl Road E/W Street Name Balcerzak Drive N/S Street Name Pohl Road Analysis Year 2036 Project ID 9243										
Project Description:																
Volume Adjustment an	d Site	Charac	teristic	s												
		EE	B			WE	3				NB			5	SB .	
	L	Т	R	U	_ 7	Г	R	U	L	Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0	- ') 1		0		0	1	0		0	1	0	
Lane Assignment			LTR				LTR	?				TR				LTR
Right-Turn Bypass		Non	е			Non	ie			N	lone				one	
Conflicting Lanes	05	1	00		, l a	1 T	40				1		25		1	—
Volume (V), veh/h Heavy Veh. Adj. (f _{HV}), %	25	430			20 35	-	10	0	40	+	190	0	35 2	165	45	0
117	2	2 0	2	2	2 2		2	2	2	2	0	2	2	2	2	2
Pedestrians Crossing	11		4	-4		0					U				0	
Critical and Follow-Up	пеаси	ay Aaj	EB	π	1		WB		_		NB		1		SB	
		Left	Right	Вура	s Le	ft T	Right	Вура	66	Left	Right	Bypass	Left	_	Right	Bypass
Critical Headway (sec)			5.1929	_	9 5.19			5.192	\rightarrow	5.1929	5.1929	5.1929			1929	5.1929
Follow-Up Headway (sec)		3.1858	-		3.18	-+	3.1858		_		3.1858	0020	3.185	_	1858	07.020
Flow Computations																
·			EB				WB				NB				SB	
		Left	Right	Вура	s Le	ft	Right	Вура	ss	Left	Right	Bypass	Left	F	Right	Bypass
Circulating Flow (V _c), pc/h			428			•	240				501			. (627	
Exiting Flow (V _{ex}), pc/h			668				449				209			4	123	
Entry Flow (V _e), pc/h			495				597				408			2	250	
Entry Volume veh/h			485				585				400				245	
Capacity and v/c Ratio	s								_				i			
			EB				WB		_		NB			_	SB	
0 " () "		Left	Right	Bypas	s Le	ft	Right	Вура	ss	Left	Right	Bypass	Left	_	Right	Bypass
Capacity (c _{PCE}), pc/h			736			4	889		4		686			-	503	
Capacity (c), veh/h			722		-		872		_		672			_	592	
v/c Ratio (X)			0.67				0.67				0.60]		').41	
Delay and Level of Ser	vice	Ī			1		NA/D		_		ND		1		0.0	
		l of	EB	Dime	s Le	₄ T	WB	D.m.	_	l off	NB	Dynasa.	104	_	SB	Dynasi
Lane Control Delay (d), s/ve	<u>ah</u>	Left	Right 17.9	Bypas	s Le	11	Right 15.5	Вура	აა	Left	Right 15.9	Bypass	Left	_	2.4	Bypass
Lane LOS	J11		77.9 C		+	\dashv	75.5 C		\dashv		75.9 C			+	2.4 B	
Lane 95% Queue			5.2	1		\dashv	5.3		\dashv		4.0	-		+	2.0	
Approach Delay, s/veh			17.95	1			15.48		\dashv		15.90	<u> </u>			2.38	<u> </u>
Approach LOS, s/veh			С				C		\dashv		C				B	
Intersection Delay, s/veh							-		<u> </u>	83	-		Ţ			
Intersection LOS		 							С							

Roundabout Control (RODEL)


RODEL										_
8:9:10		92	43 POH	L BALCE	RZEK 20	36 5	0 C	L		7
E (m) L' (m) U (m) RAD (m) PHI (d) DIA (m)	4.00 40.00 3.65 20.00 30.00 45.00	4.00 40.00 3.65 20.00 30.00	4.00 40.00 3.65 20.00 30.00 45.00	4.00 40.00 3.65 20.00 30.00 45.00	ILLEN ZO		TI TI RE TI FL	ME PERI ME SLIC SULTS P ME COST	E mir ERIOD mir \$/hi OD mir	15 15 75 15.00 15 75
GRAD SEP	13.00	13.00	0	0					am/op/pr	
LEG NAME SB POHL RD EB BALCERZ NB POHL RD WB BALCERZ	1.02 1.02 1.02	LOWS (1st 35 120 25 210 175 235 5 210	10 20 45 115	2nd etc 0 0 0 0	1 1 1	.00 .00 .00	CL 50 50 50	FLOW 0.75 1. 0.75 1. 0.75 1.	RATIO 125 0.75 125 0.75 125 0.75	FLOW TIME 15 45 75 15 45 75
TT OIL		4.65		MODE 2	000					
FLOW CAPACITY AVE DELAY MAX DELAY AVE QUEUE MAX QUEUE	veh veh mins mins veh veh	165 989 0.07 0.09 0	255 1055 0.07 0.10 0	455 1058 0.10 0.13 1 1	330 1026 0.08 0.11 0				AUDEL S L O S UEH HRS COST S	A 1.7 25.8
F1mode F2d	lirect	F3peak	Ctr1F3	rev F4	fact F6	stat	S	F8econ	F9prnt	F10run Esc

8:9:10	RODEL									_
L' (m) 40.00 40.00 40.00 40.00 40.00 TIME SLICE min 15 U (m) 3.65 3.65 3.65 3.65 3.65 RAD (m) 20.00 20.00 20.00 20.00 TIME COST \$/hr 15.00 PHI (d) 30.00 30.00 30.00 30.00 30.00 PLOW PERIOD min 15.75 DIA (m) 45.00 45.00 45.00 45.00 FLOW PERIOD min 15.75 DIA (m) 45.00 45.00 45.00 FLOW PERIOD min 15.75 DIA (m) 45.00 45.00 45.00 FLOW PERIOD min 15.75 DIA (m) 45.00 45.00 45.00 FLOW PERIOD min 15.75 DIA (m) 45.00 45.00 45.00 FLOW PERIOD min 15.75 FLOW TYPE pcu/veh VEH FLOW PEAK am/op/pm PM LEG NAME SB POHL RD 1.02 30 430 25 0 1.00 50 0.75 1.125 0.75 15.45 75 NB POHL RD 1.02 30 430 25 0 1.00 50 0.75 1.125 0.75 15.45 75 NB POHL RD 1.02 1.02 190 170 40 0 1.00 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 1.00 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 1.00 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 355 220 0 50 0.75 1.125 0.75 15.45 75 WB BALCERZ 1.02 10 10 10 10 10 10 10 10 10 10 10 10 10	8:9:10		92	43 POH	L BALCE	RZEK 2036	50 C	L		8
PHI	L' (m)	40.00	9 40.00 ° 3.65	40.00 3.65	40.00 3.65		T I I	ME SLICE SULTS PE	min ERIOD min	15 15 75
LEG NAME SB POHL RD 1.02 45 165 35 0 1.00 50 0.75 1.125 0.75 15 45 75 NB POHL RD WB BALCERZ 1.02 190 170 40 0 1.00 50 0.75 1.125 0.75 15 45 75 1.00 50 0.75 1.00 50 0.	PHI (d) DIA (m)	30.00 45.00	0 30.00 3 0 45.00 4	30.00 45.00	30.00 45.00		FL	OW PERICON TYPE	D min	15 75 VEH
FLOW veh 245 485 400 585 CAPACITY veh 858 962 925 1060 AUDEL s 7.1 AVE DELAY mins 0.10 0.13 0.11 0.13 L 0 S A MAX DELAY mins 0.13 0.18 0.16 0.18 UEH HRS 3.4 AVE QUEUE veh 0 1 1 1 COST \$ 50.8 MAX QUEUE veh 0 1 1 2	SB POHL RD 1 EB BALCERZ 1 NB POHL RD 1	1.02 1.02 1.02	45 165 30 430 190 170	35 25 40	9 9 9	1.0 1.0 1.0	F CL 10 50 10 50 10 50	FLOW F 0.75 1.1 0.75 1.1 0.75 1.1	ATIO .25 0.75 .25 0.75 .25 0.75	FLOW TIME 15 45 75 15 45 75 15 45 75
CAPACITY veh 858 962 925 1060 AVDEL s 7.1 AVE DELAY mins 0.10 0.13 0.11 0.13 L O S A MAX DELAY mins 0.13 0.18 0.16 0.18 UEH HRS 3.4 AVE QUEUE veh 0 1 1 COST \$ 50.8 MAX QUEUE veh 0 1 1 2					MODE 2					
F1mode F2direct F3peak Ctr1F3rev F4fact F6stats F8econ F9prnt F10run Esc	CAPACITY AUE DELAY MAX DELAY AUE QUEUE	veh mins mins veh	858 0.10 0.13 0	485 962 0.13 0.18 1	400 925 0.11 0.16 1	1060 0.13 0.18 1			L O S VEH HRS	A 3.4
	F1mode F2d:	irect	F3peak (Ctr1F3	rev F4	fact F6st	ats	F8econ	F9prnt	F10run Esc

RODEL				_
8:9:10	9243 POH	HL BALCERZEK 2030	6 85 CL	7
E (m) 4.00 L' (m) 40.00 U (m) 3.65 RAD (m) 20.00 PHI (d) 30.00 DIA (m) 45.00 GRAD SEP	4.00 4.00 40.00 40.00 3.65 3.65 20.00 20.00 30.00 30.00 45.00 45.00	4.00 40.00 3.65 20.00	TIME PERIOD mi TIME SLICE mi RESULTS PERIOD mi TIME COST \$/h FLOW PERIOD mi FLOW TYPE pcu/ve FLOW PEAK am/op/p	n 15 n 15 75 r 15.00 n 15 75 h VEH
LEG NAME PCU F SB POHL RD 1.02 EB BALCERZ 1.02 NB POHL RD 1.02 WB BALCERZ 1.02	LOWS (1st exit 35 120 10 25 210 20 175 235 45 5 210 115	0 1.0 0 1.0 0 1.0	0F CL FLOW RATIO 00 85 0.75 1.125 0.75 00 85 0.75 1.125 0.75 00 85 0.75 1.125 0.75 00 85 0.75 1.125 0.75	15 45 75 15 45 75
		MODE 2		
FLOW veh CAPACITY veh AUE DELAY mins MAX DELAY mins AUE QUEUE veh MAX QUEUE veh	165 255 786 852 0.09 0.10 0.12 0.13 0 0	$egin{array}{cccc} 0.15 & 0.12 \ 0.21 & 0.16 \ & & 1 \ & & 1 \ & & 1 \ \end{array}$	AUDEL L O UEH HR COST	\$ A \$ 2.5 \$ 37.0
F1mode F2direct	F3peak Ctr1F3	3rev F4fact F6st	tats F8econ F9prnt	F10run Esc

RODEL									_ X
8:9:10		924	43 POH	L BALCEF	ZEK 203	6 85 (CL		8
	4.00 40.00		4.00 40.00	4.00 40.00			IME PERIC IME SLICE	i min	15
	3.65 20.00		3.65 20.00	3.65 20.00			ME COST	RIOD min \$/hr	15.00
	30.00 45.00 A	45.00	30.00 45.00	30.00 45.00		F	LOW PERIC	pcu/veh	VEH
GRHD SEP		0	0	0		I. I	LOW PEAK	am/op/pm	PM
	02 02 02	OWS (1st 45 165 30 430 190 170 10 355	exit 35 25 40 220	2nd etc. 0 0 0 0 0	1.0 1.0 1.0	00 85	0.75 1.1 0.75 1.1 0.75 1.1		15 45 75 15 45 75
				MODE 2					
FLOW	veh	245	485	400	585				
CAPACITY	veh	656	759	722	858			AUDEL s	
	mins	0.15	0.23	0.19	0.23			L O S	
	minş	0.21	0.35	0.28	0.35			UEH HRS	
MAX QUEUE	veh veh	1	2 3	1 2	2 3			COST \$	88.0
F1mode F2di		F3peak (Ctr1F3			tats	F8econ	F9prnt	F10run Esc
220000 1201		opoun (301 11 3		400 100	0000	2000011	2 2 p2 11 C	TIOTAN LOC

Concept Cost Estimate (based upon 2016 bid price information) Prepared By: SRF Consulting Group, Inc., Date 10/2016

			Balcerzak Drive at Pohl Road					
ITEM DESCRIPTION		UNIT	UNIT PRICE	EST. QUANTITY	EST. AMOUNT			
PAVING AND GRADING COSTS								
GrP 1 Excavation - common & subgrade		cu. yd.	\$7.00	6,600	\$46,200 \$56,000 \$254,720			
GrP 2 Granular Subgrade (CV) GrP 3 County Road Pavement	741	cu. yd.	\$14.00	4,000	\$56,000			
GrP 4 Concrete Median	(1)	sq. yd. sq. yd.	\$32.00 \$40.00	7,960 590	\$23.600			
GrP 5 Walk / Trail	(1)	sg. yd.	\$25,00	2.130	\$53,250			
GrP 6 ADA Pedestrian Curb Ramp		each	\$800.00	4,690	\$17,600			
GrP 7 Concrete Curb and Gutter GrP 8 Removals - Pavement		lin. ft. sa. vd.	\$12.00 \$2.50	10,410	\$56,280 \$26.025			
SUBTOTAL PAVING AND GRADING COS	TS:	3q. ya. T	Ψ2.00	10,710	\$533,675			
DRAINAGE, UTILITIES AND EROSION CONTROL				•				
Dr 1 Local Utilities - Sanitary Sewers		lin. ft.						
Dr 2 Local Utilities - Watermains Dr 3 Water Quality Ponds		lin. ft. I.s.						
Dr 5 Drainage - urban (10-30%)		30%			\$160,000			
Dr 6 Turf Establishment & Erosion Control		10%			\$53,000			
Dr 7 Landscaping SUBTOTAL DRAINAGE, UTILITIES AND E	ROSI	ON CONTROL			\$213.000			
SIGNAL AND LIGHTING COSTS		ON CONTROL	· I	<u> </u>	Ψ210,000			
SGL 1 Signals (permanent) SGL 2 At Grade Intersection Lighting (permanent - nor		each	\$200,000					
		each	\$10,000	12	\$120,000			
SUBTOTAL SIGNAL AND LIGHTING COS	TS:				\$120,000			
SIGNING & STRIPING COSTS								
SGN 1 Mainline Signing (C&D)		mile	\$20,000 \$10,000	0.3	\$6,000			
SGN 2 Mainline Striping SUBTOTAL SIGNING & STRIPING COSTS	I	mile	\$10,000	0.3	\$3,000 \$9,000			
SOBTOTAL SIGNING & STRIFING COSTS).		<u> </u>		φ9,000			
SUBTOTAL CONSTRUCTION COSTS:					\$875,675			
MISCELLANEOUS COSTS		00/			#F0.000			
M 1 Mobilization M 2 Non Quantified Minor Items (10% to 30%)		6% 20%	+		\$53,000 \$175,000			
M 3 Temporary Pavement & Drainage		2% 4%			\$18,000			
M 4 Traffic Control		4%			\$35,000			
SUBTOTAL MISCELLANEOUS COSTS:					\$281,000			
ESTIMATED TOTAL CONSTRUCTION COSTS without	out Co	ntingency:			\$1,156,675			
1 Contingency or "risk" (10% to 30%)		20%			\$231,000			
ESTIMATED TOTAL CONSTRUCTION COSTS PLUS	S CON	TINGENCY:			\$1,387,675			
OTHER PROJECT COSTS:								
		Lump Cum						
R/W ACQUISITIONS		Lump Sum						
DESIGN ENG. & CONSTRUCTION ADMIN.		Lump Sum						
SUBTOTAL OTHER PROJECT COSTS								
TOTAL PROJECT COST (based upon 2016 b	oid pri	ce information	1)		\$1,387,67			
INFLATION COST (CURRENT YR. TO YR. OF	OPF	Years	3%					
· · · · · · · · · · · · · · · · · · ·			570		£4.00=.0=			
TOTAL PROJECT COST (OPENING YEAR DO			\$1,387,67					

NOTE: (1) Includes aggregate base class 5.

MAJOR ITEMS NOT INCLUDED:
- Local utilities (sanitary sewer or watermain)
- Water quality bonds or other BMPs
- R/W acquisitions
- Engineering design fees
- Inflation