Intersection Control Evaluation

Lor Ray Drive at Howard Drive

in North Mankato, Nicollet County, Minnesota

Mankato/North Mankato Area Planning Organization

October 2016

SRF No. 016 09243

Intersection Control Evaluation

Lor Ray	Drive	at
Howard	Drive	

Proposed Letting Date: TBD

Report Certification:

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

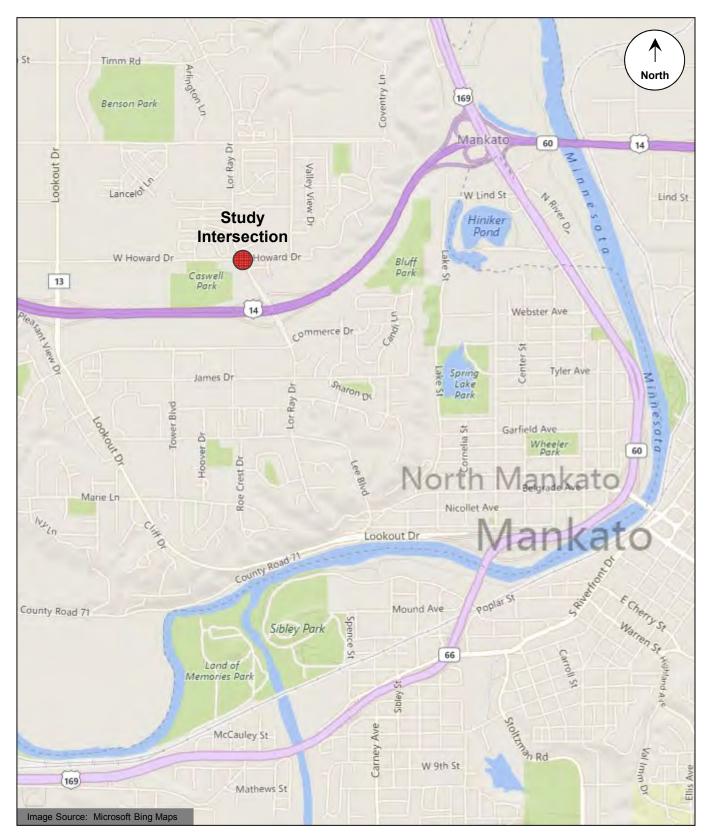
Scott C. Poska	47068
Print Name	Reg. No.
Att C. PL	10-31-16
Signature	Date
Approved:	uliche
City of North Mankato City Engineer	Date

Table of Contents

Introduction	1
Existing Intersection Characteristics	3
Future Conditions	5
Traffic Volumes	7
Analysis of Alternatives	10
Alternatives Assessment	16
Conclusions and Recommendations	17
Appendix	20

 $H:\ \ Projects \ \ 09000 \ \ 9243 \ \ SD \ \ Reports \ \ 9243 \ \ ICE\ Lor\ Ray\ \ Howard\ \ 2016-10-26.docx$

Introduction


This report contains the intersection control evaluation results for the Lor Ray Drive at Howard Drive intersection in North Mankato, Nicollet County, Minnesota (see Figure 1). The purpose of the evaluation was to analyze the intersection control alternatives for the intersection to identify the long-term preferred intersection control. The following intersection control alternatives were considered applicable and are analyzed within this report:

- All-Way Stop Control
- Roundabout Control
- Traffic Signal Control

A mini-roundabout variation was also explored. According to *Mini-Roundabouts Technical Summary* (Federal Highway Administration, 2010), mini-roundabouts are best suited/most efficient in lower speed environments, and are generally recommended for intersections where the total entering daily traffic volume does not exceed approximately 15,000 vehicles. The intersection currently has 12,300 entering vehicles and is forecasted to be 15,900 by 2036. Large vehicles, including school buses, are typically required to over-run the fully traversable central island, and high volumes of large vehicles will significantly reduce the capacity of a mini-roundabout, and may lead to rapid wear of the roadway markings. Based on these factors, the mini-roundabout option was not analyzed further at the study intersection.

A detailed warrants analysis, operational analysis, safety analysis, and planning-level cost analysis were performed to determine the preferred intersection control alternative. In addition to these analyses, other factors considered for this evaluation that were applicable to determining the long-term preferred intersection control included:

- Right-of-Way Considerations
- Transportation System Considerations
- Pedestrian and Bicycle Considerations
- Local Acceptance

Study Intersection

Figure 1

Existing Intersection Characteristics

Existing Conditions

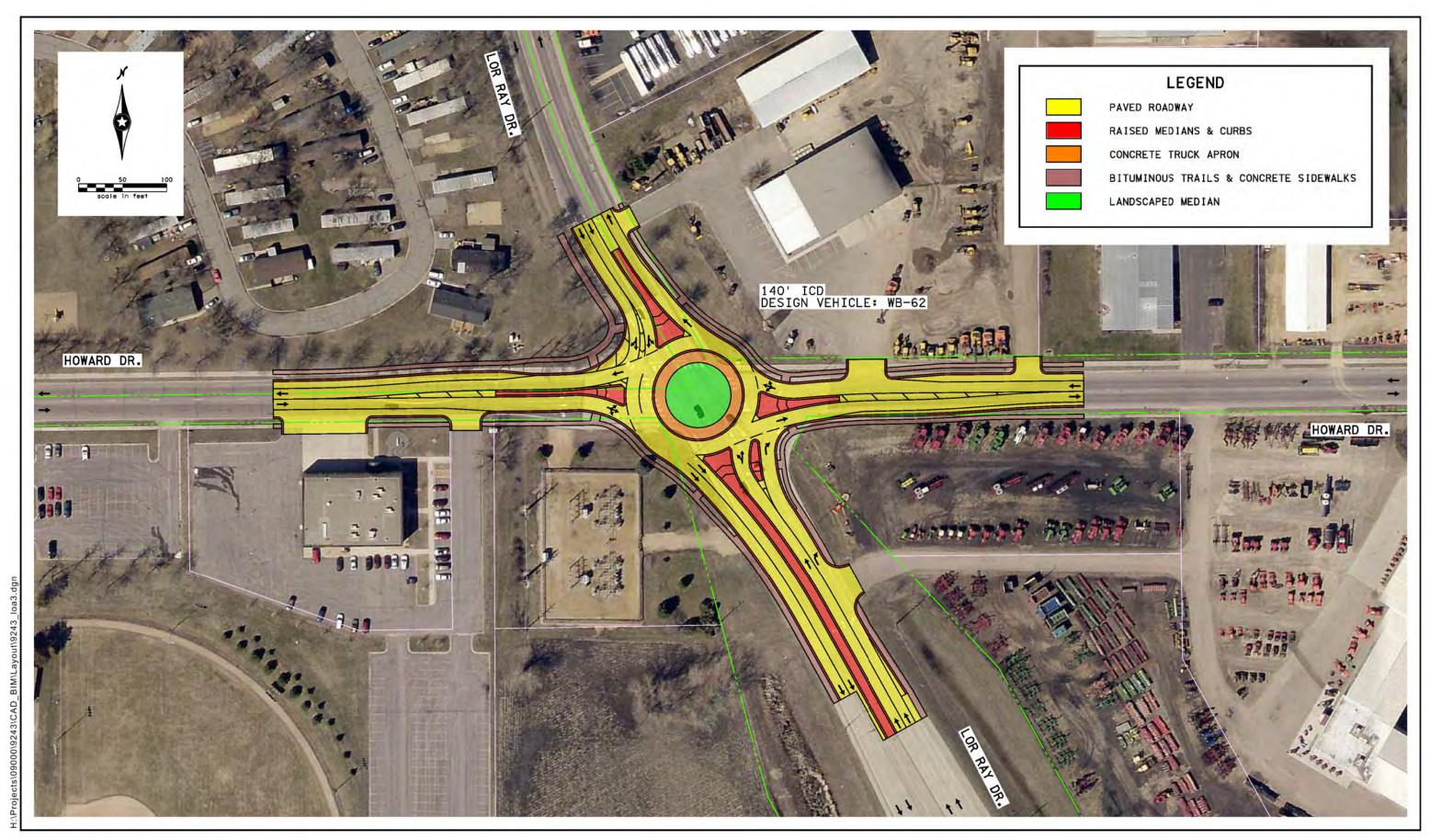
The study intersection is located in the City of North Mankato, Nicollet County north of T.H. 14, as shown in Figure 1. Lor Ray Drive is a five-lane divided roadway south of the study intersection through the T.H. 14 interchange and is a three-lane undivided roadway to the north. Lor Ray Drive is a city street with a speed limit of 30 mph and is functionally classified as a Minor Arterial. Howard Drive is a two-lane undivided roadway with a speed limit of 30 mph. Howard Drive is a city street and is functionally classified as a Major Collector west of Lor Ray Drive and a Local road to the east of Lor Ray Drive. The intersection of Lor Ray Drive and Howard Drive is currently all-way stop controlled. There are bicycle and pedestrian accommodations on both sides of Lor Ray Drive and Howard Drive with marked pedestrian crossings at the intersection. The adjacent area has primarily residential and industrial land uses. Lor Ray Drive, including the intersection at Howard Drive, was reconstructed in 2000. The existing lane configurations for the Lor Ray Drive at Howard Drive intersection are listed in Table 1 below and are shown in Figure 2.

Table 1. Existing Conditions

Leg	Configuration
Northbound Lor Ray Drive	One left-turn lane, one thru lane, and one right-turn lane
Southbound Lor Ray Drive	One left-turn lane, one thru lane, and one shared thru/right-turn lane
Eastbound Howard Drive	One left-turn lane, one thru lane, and one right-turn lane
Westbound Howard Drive	One left-turn lane and one shared thru/right-turn lane

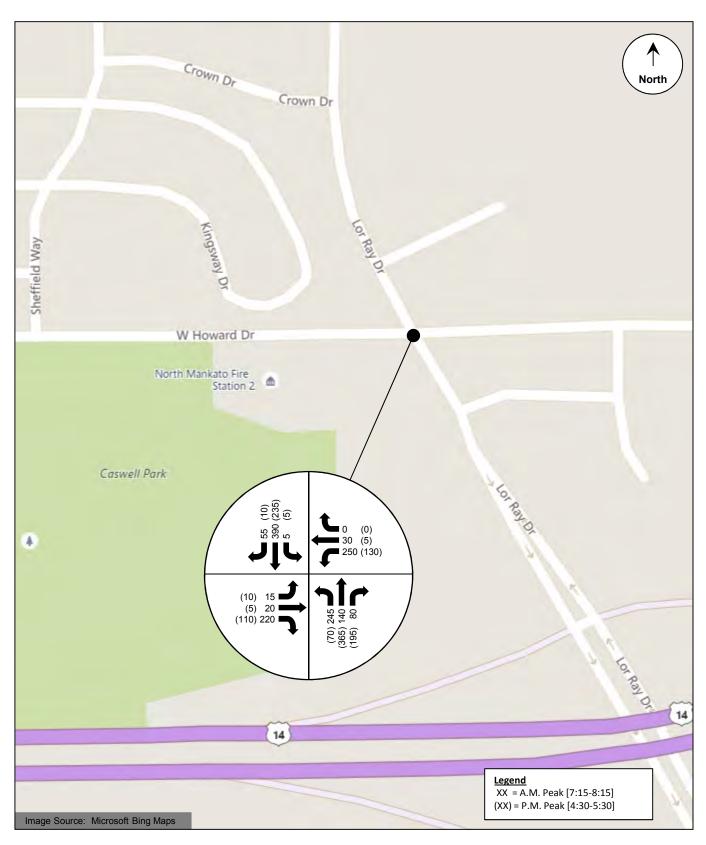
Crash History

Crash data was obtained from the Minnesota Crash Mapping Analysis Tool (MnCMAT) database for a five-year period from 2011 to 2015. There were seven recorded crashes at the study intersection during the analysis period. Detailed crash data is provided in the Appendix. This results in a crash rate of 0.31 crashes per million entering vehicles, which is below the statewide average of 0.35 for all-way stop controlled intersections and the critical crash rate of 0.58 (0.95 level of confidence) for this intersection.



Future Conditions

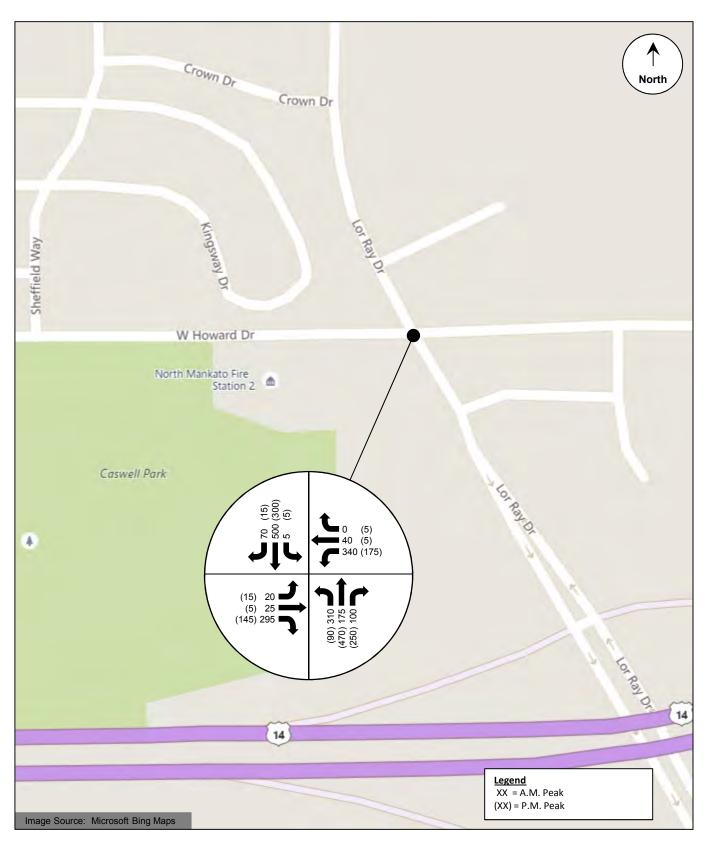
Based on discussions with City staff in the summer of 2016, no short-term improvements to Lor Ray Drive, Howard Drive, or the study intersection are planned. As part of the City's adopted 2015 Comprehensive Plan, future land uses in the vicinity of the study intersection were updated to commercial land uses. This may include retail, office, hotel, restaurant, and convenience store type uses. Additionally, a new elementary school is planned at the intersection of Lor Ray Drive and Carlson Drive as well as possible expansion of Caswell Park. However, no formal development plans have been submitted for these areas. Nonetheless, future development will necessitate an intersection control change to support traffic growth. For the alternatives analysis, the existing lane configurations under all-way stop control (listed in Table 1 and shown in Figure 2) were assumed to be the same for the traffic signal control alternative. The lane configurations for the roundabout control alternative are listed in Table 2 below and are shown in Figure 3.


Table 2. Proposed Lane Configurations for Roundabout Control Alternative

Leg	Configuration
Northbound Lor Ray Drive	One shared thru/left-turn lane and one channelized right-turn lane
Southbound Lor Ray Drive	One shared thru/left-turn lane and one shared thru/right-turn lane
Eastbound Howard Drive	One shared lane (all movements)
Westbound Howard Drive	One shared lane (all movements)

Traffic Volumes

Hourly traffic volumes including the existing a.m. and p.m. peak hour were collected in early April 2016 by the City of Mankato prior to the closure of T.H. 169 and are shown in Figure 4. Pedestrian and bicycle volumes were also collected. Growth rates from the MAPO 2045 Transportation Plan were used to determine Forecasted Year 2036 peak hour turning movement volumes, which are shown in Figure 5. Due to anticipated land use changes in the area adjacent to the study intersection, forecasted yearly growth rates of 1.4% for Lor Ray Drive (Minor Arterial) and 1.7% for Howard Drive (Major Collector) were used. These rates capture some, but not all, of the proposed commercial, recreational, and educational land uses, discussed previously, in the vicinity of the intersection since no formal development plans have been submitted.



Existing Year 2016 Volumes

Figure 4

Intersection Control Evaluation Lor Ray Drive at Howard Drive

Forecasted Year 2036 Volumes

Figure 5

Analysis of Alternatives

The analysis of the all-way stop control, traffic signal control, and roundabout control alternatives included a warrants analysis, operational analysis, planning-level crash analysis, and a planning-level cost analysis. Existing Year 2016 and Forecasted Year 2036 volumes with proposed lane configurations discussed previously were used for the analysis.

Warrants Analysis

A warrants analysis was performed for the traffic signal control alternative as outlined in the February 2015 *Minnesota Manual on Uniform Traffic Control Devices* (MN MUTCD). The signal warrants analysis was based on the assumptions shown in Table 3.

Table 3. Warrants Analysis Assumptions

Leg	Geometry	Speed
Northbound Mainline (Lor Ray Drive)	2 or more approach lanes	30 mph
Southbound Mainline (Lor Ray Drive)	2 or more approach lanes	30 mph
Eastbound Minor Street (Howard Drive)	1 approach lane	30 mph
Eastbound Minor Street (Howard Drive)	1 approach lane	30 mph

Because of the low thru and right-turn volumes compared to the left-turn volumes on the westbound approach, it was considered a one lane approach, and similarly the eastbound approach was considered a one lane approach due to the low thru and left-turn volumes compared to the right-turn volumes. Table 4 provides a summary of the results of the warrants analysis. The detailed warrants analysis can be found in the Appendix.

Table 4. Warrants Analysis Results

MN MUTCD Warrant	Hours		2016 Imes	Forecasted Year 2036 Volumes	
WIN MOTOD Warrant	Required	Hours Met	Warrant Met	Hours Met	Warrant Met
Warrant 1A: Minimum Vehicular Volume	8	3	No	5	No
Warrant 1B: Interruption of Continuous Traffic	8	0	No	4	No
Warrant 1C: Combination of Warrants	8	3	No	7	No
Warrant 2: Four-Hour Volume	4	2	No	4	Yes
Warrant 3B: Peak-Hour Volume	1	0	No	2	Yes
Multi-way Stop Applications Condition C	8	7	No	10	Yes

Warrants 4-9 were investigated but were determined to be not applicable. Results of the warrants analysis indicate that Existing Year 2016 volumes do not satisfy any MN MUTCD traffic signal warrants, while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 2 and 3B.

Operational Analysis

An initial planning-level analysis was performed for the roundabout control alternative based on Highway Capacity Manual methods found in *NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition* (Transportation Research Board, 2010). The analysis involved testing the theoretical capacity of a single-lane roundabout against the Forecasted Year 2036 entering and circulating volumes. As shown in Chart 1, the Forecasted Year 2036 volumes exceed the theoretical capacity of a single-lane roundabout. Therefore, the roundabout alternative included additional lanes needed to support the traffic volumes and match into the existing roadway layout.

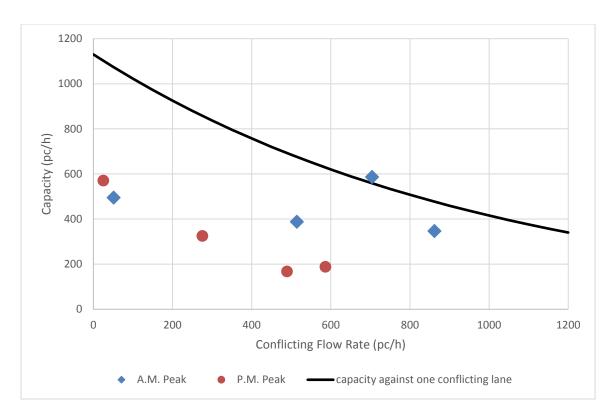


Chart 1. Single-Lane Roundabout Entry Lane Capacity (Forecasted Year 2036 volumes)

Operational analysis of the roundabout control alternative was performed using RODEL and Highway Capacity Software (HCS). RODEL is a software program that is based on existing roundabout operational research and uses an empirical formula method to determine roundabout delay based on geometric features and traffic flows. RODEL is the current MnDOT accepted analysis tool for evaluating roundabouts. HCS is based on methodologies found in the 2010 Highway Capacity Manual (HCM) which is considered a conservative approach to determining the capacity of a roundabout. It is important to note that RODEL and HCS only report "stop" or "control" delay. Therefore, in order to determine the total delay, "geometric" delay, or delay due to vehicle deceleration and acceleration through an intersection, must be added to the "stop" or "control" delay.

The detailed operational analysis of all-way stop control and traffic signal control was performed using methods outlined in the 2010 HCM using Synchro/SimTraffic. Synchro/SimTraffic is capable of calculating various measures of effectiveness such as control delay, queuing, and total travel time impacts. SimTraffic results are reported for the analysis.

The operational analysis identified a Level of Service (LOS), which indicates how well an intersection is operating based on average delay per vehicle. Intersections are given a ranking from LOS A to LOS F. LOS A indicates the best traffic operation and LOS F indicates an intersection where demand exceeds capacity. LOS A through LOS D are generally considered acceptable. RODEL results for a Confidence Level (CL) of 50% and 85% were determined. 50% CL results are typically used for roundabout analysis while the 85% CL results indicate the sensitivity of the roundabout design. When a substantial degradation in LOS is expected

from 50% CL to 85% CL, designers should exercise caution in the design of the roundabout to ensure adequate capacity is provided.

Tables 5 and 6 provide a summary of the operational analysis for Existing Year 2016 and Forecasted Year 2036 conditions, respectively. Detailed operational analysis results can be found in the Appendix.

Table 5. Existing Year 2016 Operational Analysis Results

			A.M.	Peak	P.M. Peak	
Alternative	Analysis Tool		Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control	Synchro/SimTraffic		26/ 51	D/ F	4/5	A/A
Traffic Signal Control	Synchro/SimTraffic		14/22	B/C	6/13	A/B
	HCS 2010		10/13	A/B	6/7	A/A
Roundabout Control	RODEL	50% CL	4/6	A/A	5/7	A/A
	85% CL	6/10	A/A	8/11	A/B	

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Table 6. Forecasted Year 2036 Operational Analysis Results

	Analysis Tool		A.M.	Peak	P.M. Peak	
Alternative			Delay (1) (sec/veh)	LOS	Delay (1) (sec/veh)	LOS
All-Way Stop Control	Synchro/SimTraffic		>100/>100	F/F	6/6	A/A
Traffic Signal Control	Synchro/SimTraffic		26/28	C/C	7/15	A/B
	HCS 2010		16/29	C/D	8/10	A/A
Roundabout Control	RODEL	50% CL	6/9	A/A	7/10	A/B
		85% CL	10/21	B/C	16/25	C/D

⁽¹⁾ Control/stop delay is reported. Overall results are followed by the worst approach results.

Results of the operational analysis indicate that under the existing all-way stop control, the westbound approach operates with an unacceptable level of service during the a.m. peak. Under Forecasted Year 2036 conditions, the all-way stop control alternative would continue to operate with unacceptable levels of service in the a.m. peak, therefore the all-way stop control alternative was not considered further as a viable alternative. The traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions. The traffic signal control alternative would be best suited to accommodate additional traffic volumes by signal retiming and/or lane use changes if future commercial, recreational, and educational land uses, discussed previously, are fully realized. The roundabout control alternative would require reconstruction to provide additional capacity.

Safety Analysis

A crash analysis was performed to determine the projected crashes per year for Year 2016 and Forecasted Year 2036 conditions for the study intersection. Crash rates from the MnDOT Green Sheets (2011 to 2015 data) were used for the crash analysis of the alternatives. According to NCHRP Report 672 Roundabouts: An Informational Guide, Second Edition (Transportation Research Board, 2010), the conversion of an all-way stop controlled intersection to a roundabout has an insignificant impact on safety. Therefore, the crash rate for all-way stop control was used for the roundabout control alternative. A summary of the crash analysis is shown in Table 7.

Table 7. Crash Analysis Results

Alternative	Intersection AADT (2016)	Intersection AADT (2036)	Crash Rate	Projected Crashes/Year (2016)	Projected Crashes/Year (2036)
Traffic Signal Control	12.300	15.900	0.52	3	4
Roundabout Control	12,300	15,900	0.35	2	3

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative.

Studies have determined that the installation of a roundabout can improve overall safety of an intersection when compared to other forms of intersection control. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased. A roundabout virtually eliminates right-angle and left-turn head-on crashes. Studies have shown the frequency of injury crashes is reduced more than property damage only crashes.

At a roundabout, drivers must be aware of traffic traveling around the circle when merging on or off the roundabout. Conversely, drivers at a traditional intersection must be aware of vehicles at all approaches and the movements they are making. This issue is most prevalent at stop-controlled intersections where there is not a traffic signal to control vehicle movements.

Planning-Level Cost Analysis

Capital Costs

The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost than the traffic signal control alternative.

Operation and Maintenance Costs

Traffic signals typically have higher operation and maintenance costs than roundabouts because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island.

A cost analysis summary is shown in Table 8. Detailed cost analysis results can be found in the Appendix.

Table 8. Cost Analysis Summary

Alternative	Capital Costs (1)	Operation/Maintenance Costs (annual)
Traffic Signal Control	\$300,000	\$4,000-\$6,000
Roundabout Control	\$1,490,000	\$500-\$1,000

⁽¹⁾ Does not include engineering or right-of-way costs.

Alternatives Assessment

Right-of-Way Considerations

The roadway geometry for the traffic signal control alternative would use existing conditions and therefore no additional right-of-way would be expected. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. The right-of-way impacts in the northwest and southeast quadrants would be minimal, while the impacts in the northeast and southwest quadrants would be more significant. In the southwest quadrant, the roundabout control alternative would result in the roadway and sidewalk moving closer to the power distribution facility.

Transportation System Considerations

There is an existing traffic signal approximately 900 feet south of the study intersection at the Lor Ray Drive and T.H. 14 north ramps intersection, and another a quarter mile farther south at the Lor Ray Drive and Commerce Drive intersection. The traffic signal control alternative would extend the continuity of this type of intersection control along Lor Ray Drive. There are several roundabouts west of the study intersection at T.H. 14 interchanges. No significant queues are expected with either the traffic signal control or roundabout control alternatives.

Pedestrian and Bicycle Considerations

Currently, there are sidewalks on both sides of all legs of the study intersection. Caswell Park and Dakota Meadows Middle School in the adjacent area contribute to high pedestrian activity. Pedestrian accommodations can be provided regardless of selected intersection control. The design of a roundabout allows pedestrians to cross one direction of traffic at a time with a refuge space in the middle of each leg of the roundabout, and these short crossing distances and reduced travel speeds of traffic improve pedestrian safety. Their route is slightly longer since they are kept to the outside of the inscribed circle. The design of signalized intersections can create a safe environment for pedestrian crossings with the use of pedestrian signal phasing. This phasing allows pedestrians to safely cross an intersection while vehicular movements are served. Although signalized intersections can provide indications showing pedestrian right-of-way, potential conflicts can come from red-light running through vehicles and permissive turning traffic.

Local Acceptance

Drivers are familiar with traveling through signalized intersections since there are many intersections in the area under this type of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area including two roundabouts a mile west at the T.H. 14 and Lookout Drive interchange.

Conclusions and Recommendations

The following conclusions are provided for this intersection control evaluation for the Lor Ray Drive at Howard Drive intersection in North Mankato, Nicollet County, Minnesota:

Warrants Analysis

Results of the warrants analysis indicate that Existing Year 2016 volumes do not satisfy any traffic signal warrants, while Forecasted Year 2036 volumes satisfy the MN MUTCD warrant requirements for traffic signal Warrants 2 and 3B.

Operational Analysis

Results of the operational analysis indicate that all-way stop is not a viable alternative. The traffic signal control and roundabout control alternatives would operate with acceptable levels of service under forecasted conditions.

Safety Analysis

Based on the results of the crash analysis, the roundabout control alternative is anticipated to have slightly less crashes than the traffic signal control alternative. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased.

• Planning-Level Cost Analysis

The traffic signal control alternative can utilize the existing geometric conditions, therefore the cost for this alternative would only be the cost of installing a traffic signal system, along with ADA improvements, which would be approximately \$300,000. The roundabout control alternative would require substantial reconstruction at and leading up to the intersection, which results in a much higher cost estimate of approximately \$1,490,000. Traffic signals typically have higher operation and maintenance costs because of the electricity required to operate the signal and routine maintenance required to keep the signal in operation. Operation and maintenance costs associated with a roundabout can vary depending on the amount of illumination required or landscaping alternatives used for the center island.

• Right-of-Way Considerations

The roadway geometry for the traffic signal control alternative would use existing conditions and therefore no additional right-of-way would be expected. Construction of a roundabout at the study intersection would require additional right-of-way in all four quadrants of the intersection. The right-of-way impacts in the northwest and southeast quadrants would be minimal, while the impacts in the northeast and southwest quadrants would be more significant.

• Transportation System Considerations

There is an existing traffic signal approximately 900 feet south of the study intersection at the Lor Ray Drive and T.H. 14 north ramps intersection, and one quarter mile farther

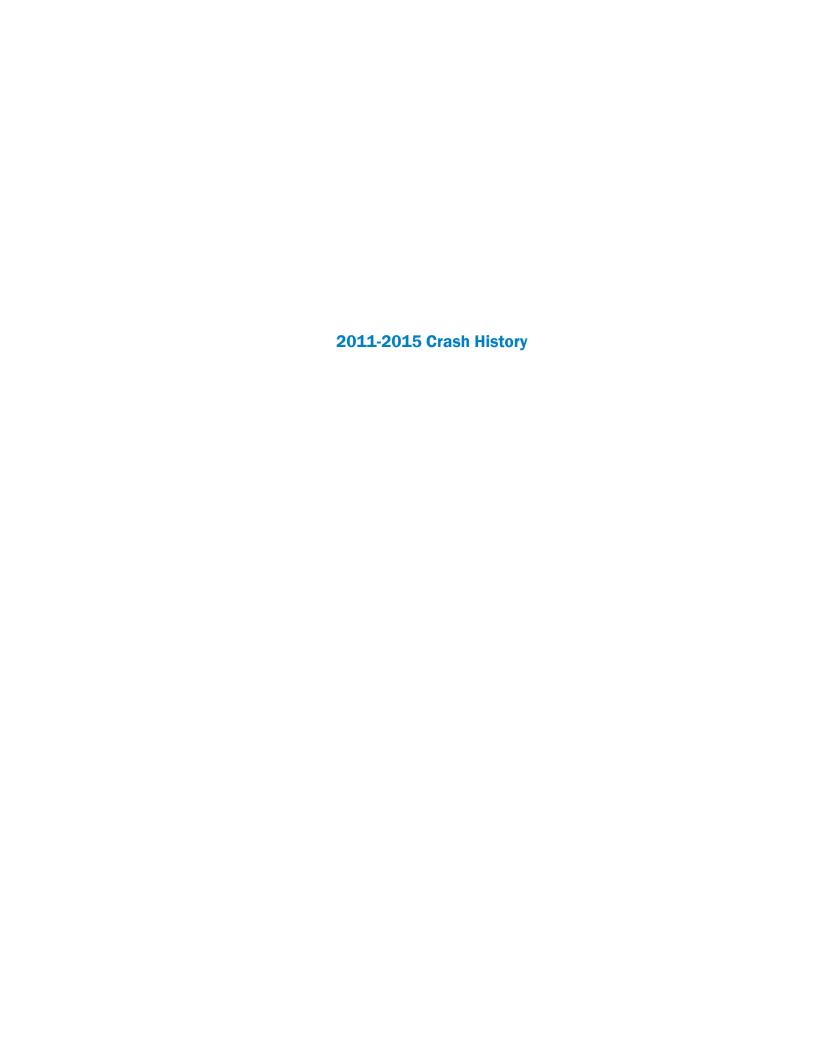
south there is another traffic signal. There are several roundabouts west of the study intersection at T.H. 14 interchanges. The traffic signal control alternative would extend the intersection control continuity along Lor Ray Drive.

Pedestrian and Bicycle Considerations

The design of signalized intersections can take pedestrian crossings and safety into consideration with the use of pedestrian signal phasing. The design of a roundabout allows pedestrians to cross one direction of traffic at a time on each leg of the roundabout. Their route is slightly longer since they are kept to the outside of the inscribed circle.

Local Acceptance

Drivers are familiar with traveling through signalized intersections since there are many intersections in the area under this type of traffic control. Drivers are also familiar with traveling through roundabout controlled intersections since there are many existing roundabouts throughout the Mankato area including two roundabouts a mile west at the T.H. 14 and Lookout Drive interchange.


A decision matrix was developed to help evaluate the key factors and is provided on the following page. Based on the results of this Intersection Control Evaluation, both the traffic signal control and roundabout control alternatives are viable options for the Lor Ray Drive at Howard Drive intersection. Roundabout control is recommended since this type of control is anticipated to have slightly less crashes than the traffic signal control alternative. Roundabouts typically have fewer conflict points than conventional intersections and the geometry of a roundabout induces lower speeds for vehicles approaching and traversing an intersection. With lower speeds, the severity of the crashes is decreased. Drivers are familiar with roundabout control since there are many existing roundabouts throughout the Mankato area including two roundabouts a mile west at the T.H. 14 and Lookout Drive interchange. Consideration should be made during the design of the roundabout for future capacity needs that may be necessary if proposed future commercial, recreational, and educational land uses are fully realized. These considerations would include additional right of way needs in addition to utility relocations.

Alternatives Decision Matrix: Lor Ray Drive at Howard Drive

<u>Factor</u>		All-Way Stop Control	Traffic Signal Control	Roundabout Control	Recommended Alternative(s) Based on Factor
Warrants	2016	AWSC warrant not met	Existing Year 2016 volumes do not meet traffic signal control warrants	N/A	Roundabout Control
Analysis	2036	AWSC warrant met	Forecasted Year 2036 volumes meet traffic signal control warrants	N/A	All-Way Stop Control Traffic Signal Control Roundabout Control
Operational	2016	Lowest p.m. peak delay Unacceptable a.m. peak LOS	Acceptable LOS	Acceptable LOS	Traffic Signal Control Roundabout Control
Analysis	2036	Unacceptable a.m. peak LOS	Acceptable LOS	Acceptable LOS	Traffic Signal Control Roundabout Control
Additional Capa Future Grov		Forecasted Year 2036 volumes are over capacity	Additional capacity can be realized by signal retiming and/or lane use adjustments.	Additional capacity would require reconstruction of portions of the roundabout.	Traffic Signal Control
Safety	Pro(s):	N/A	Signal indications show vehicle right-of-way	Least number of crashes expected Lower vehicle speeds through intersection	Roundabout Control
Analysis	Con(s):	N/A	Slightly more crashes expected than roundabout	Drivers select acceptable gaps	
Cost	Pro(s): N/A		Lower capital costs (\$300,000) than roundabout control	Lower operation/maintenance costs than traffic signal control	Traffic Signal Control
Analysis	Con(s):	N/A	Higher operation/maintenance costs than roundabout control	Higher capital costs (\$1,490,000) than traffic signal control Requires substantial reconstruction	
	Pro(s):	N/A	No ROW impacts	none	Traffic Signal Control
Right-of-Way	Con(s):	N/A	none	Requires additional ROW in all four quadrants	
Transportation	Pro(s):	N/A	Provides control continuity along Lor Ray Drive	Matches control of roundabouts at nearby T.H. 14 interchanges	Traffic Signal Control Roundabout Control
System Considerations	Con(s):	N/A	none	none	
Pedestrian and	intersection		Traffic Signal Control Roundabout Control		
Bicycle Considerations Con(s):		N/A	Pedestrian signal phasing can lead to a false sense of security	Longer pedestrian route No pedestrian phase	
Local	Pro(s):	N/A	Familiar to drivers	• Familiar to drivers	Traffic Signal Control Roundabout Control
Acceptance	Con(s):	N/A	none	none	

Appendix

- 2011-2015 Crash History
- Existing Year 2016 Warrants Analysis
- Forecasted Year 2036 Warrants Analysis
- Existing Year 2016 Detailed Operational Analysis
- Forecasted Year 2036 Detailed Operational Analysis
- Detailed Cost Analysis

Crash Detail Report

Lor Ray Drive and Howard Drive

Report Version 1.0 March 2010

Crash ID: 110590205

Date: 02/28/2011

Time: 1358

Svs: 05-MSAS

County: NICOLLET

City: NORTH MANKATO

Route: 28550255

000+00.805

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY

Road Char: STRAIGHT AND LEVEL Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Light Cond: DAYLIGHT

Weather 1: CLEAR

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: SIDESWIPE PASSING

Officer:

Reliability: CONFIDENT

of Vehicles: 2.00

Unit 1

Trav Dir: EAST

Veh Act: RIGHT TURN

Veh Type: PASSENGER CAR

Age:

F Gender:

Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED Unit 2

RIGHT TURN

TRUCK W/ SEMI TRAILER

Μ

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

Crash ID: 112410151 **Date:** 08/25/2011

County: NICOLLET City: NORTH MANKATO Sys: 05-MSAS

Route: 28550255

000+00.805

Severity: NON-INCAPACITATING INJURY

Road Type: 4 6 LANES UNDIV 2 WAY

Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/PEDALCYCLE

Surf Cond: DRY

Light Cond: DAYLIGHT Weather 1: CLEAR

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Time: 1451

Diagram: HEAD ON

Officer:

Reliability: CONFIDENT

of Vehicles: 1.00

Unit 1

Trav Dir: EAST

Veh Act: START TRAFFIC

PICKUP TRUCK Veh Type:

57 Age: Gender:

Cond: NORMAL

Μ

Cont Fact 1 DISTRACTION

NOT SPECIFIED

Unit 2

STRAIGHT AHEAD

BICYCLE

45

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

08/01/2016

Cont Fact 2

MnCMAT 1.0.0

Page 1 of 4

 Crash ID:
 120810087
 Date:
 03/21/2012
 Time:
 1510
 Sys:
 05-MSAS

 County:
 NICOLLET
 City:
 NORTH MANKATO
 Route:
 28550255

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 3 LANES UNDIVIDED

To Junction: INTERSECTION-RELATED

Road Char: STRAIGHT AND LEVEL

Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 30

Surf Cond: DRY Diagram: RIGHT ANGLE

Light Cond: DAYLIGHT Officer:
Weather 1: CLOUDY Reliability:

Weather 1: CLOUDY Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Date: 07/22/2012

City: NORTH MANKATO

Unit 1

Trav Dir: N

Veh Act: | START TRAFFIC

Veh Type: | VAN OR MINIVAN

Age: 86
Gender: F

Cond: | NORMAL

Crash ID: 122050074

County: NICOLLET

Cont Fact 1 | FAIL TO YIELD ROW

Cont Fact 2 NOT SPECIFIED

Unit 2

STRAIGHT AHEAD

VAN OR MINIVAN

38 F

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Sys: 05-MSAS

Unit 3

Route: 28550117 000+00.806

000+00.805

Severity: PROPERTY DAMAGE

Road Type: 4 6 LANES UNDIV 2 WAY

Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY

Light Cond: DAYLIGHT

ight cond. Brillia

Weather 1: CLEAR

Weather 2: NOT SPECIFIED

First Event: ON ROADWAY

To Junction: NON-JUNCTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Time: 1147

Diagram: SIDESWIPE PASSING

Officer:

Reliability: CONFIDENT

of Vehicles: 2.00

Unit 1

Trav Dir:

Veh Act: | STRAIGHT AHEAD

Veh Type: | PICKUP TRUCK

Age: 38

Gender:

Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 | NOT SPECIFIED

Unit 2

Ν

STRAIGHT AHEAD

PASSENGER CAR

87

F

NORMAL

IMPROPER LANE

IMPROPER TURN

Unit 3

08/01/2016 MnCMAT 1.0.0 Page 2 of 4

 Crash ID:
 132490096
 Date:
 09/03/2013
 Time:
 1645
 Sys:
 05-MSAS

 County:
 NICOLLET
 City:
 NORTH MANKATO
 Route:
 28550117

Severity: PROPERTY DAMAGE First Event: ON ROADWAY

Road Type: 4_6 LANES UNDIV 2_WAY

To Junction: 4-LEGGED INTERSECTION

Road Char: STRAIGHT AND LEVEL Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT Speed Limit: 30

Surf Cond: DRY

Diagram: RIGHT ANGLE

Light Cond: DAYLIGHT

Officer:

Weather 1: CLEAR Reliability: CONFIDENT

Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: | W

Veh Act: | LEFT TURN

Veh Type: | SPORT UNTILITY VEHICLE

Age: 48
Gender: F

Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED

Unit 2

S

STRAIGHT AHEAD

PICKUP TRUCK

29 M

NORMAL

DISREGARD TRAFFIC DEVICE

FAIL TO YIELD ROW

Unit 3

000+00.812

000+00.812

 Crash ID:
 141900191
 Date:
 07/09/2014
 Time:
 1938
 Sys:
 05-MSAS

 County:
 NICOLLET
 City:
 NORTH MANKATO
 Route:
 28550117

•

First Event: ON ROADWAY

To Junction: 4-LEGGED INTERSECTION

Traffic Device: STOP SIGN 4-WAY

Speed Limit: 30

Diagram: NOT APPLICABLE

Officer:

Weather 1: CLEAR Reliability: CONFIDENT
Weather 2: NOT SPECIFIED # of Vehicles: 1.00

Unit 1

Severity: POSSIBLE INJURY

Road Char: STRAIGHT AND LEVEL

Crash Type: COLL W/PEDALCYCLE

Road Type: 4 6 LANES UNDIV 2 WAY

Trav Dir: W

Surf Cond: DRY

Light Cond: SUNSET

Veh Act: | STRAIGHT AHEAD

Veh Type: | VAN OR MINIVAN

Age: 72

Gender:

Cond: NORMAL

Cont Fact 1 FAIL TO YIELD ROW

Cont Fact 2 | NOT SPECIFIED

Unit 2

STRAIGHT AHEAD

BICYCLE

37

F

NORMAL

NO IMPROPER DRIVING

NOT SPECIFIED

Unit 3

08/01/2016 MnCMAT 1.0.0 Page 3 of 4

 Crash ID:
 150500116
 Date:
 02/19/2015
 Time:
 0815
 Sys:
 05-MSAS

 County:
 NICOLLET
 City:
 NORTH MANKATO
 Route:
 28550117

Severity: PROPERTY DAMAGE

Road Type: 4_6 LANES UNDIV 2_WAY

To Junction: INTERSECTION-RELATED

Road Char: STRAIGHT AND LEVEL

Traffic Device: STOP SIGN 4-WAY

Crash Type: COLL W/MV IN TRANSPORT

Surf Cond: DRY
Light Cond: DAYLIGHT

Weather 1: CLEAR Reliability: CONFIDENT Weather 2: NOT SPECIFIED # of Vehicles: 2.00

Unit 1

Trav Dir: N

Veh Act: | STRAIGHT AHEAD

Veh Type: | PICKUP TRUCK

Age: 59
Gender: M

Cond: NORMAL

Cont Fact 1 NO IMPROPER DRIVING

Cont Fact 2 NOT SPECIFIED

Unit 2

NE

LEFT TURN

VAN OR MINIVAN

21 M

NORMAL

FAIL TO YIELD ROW

OTHER VEHICLE DEFECT

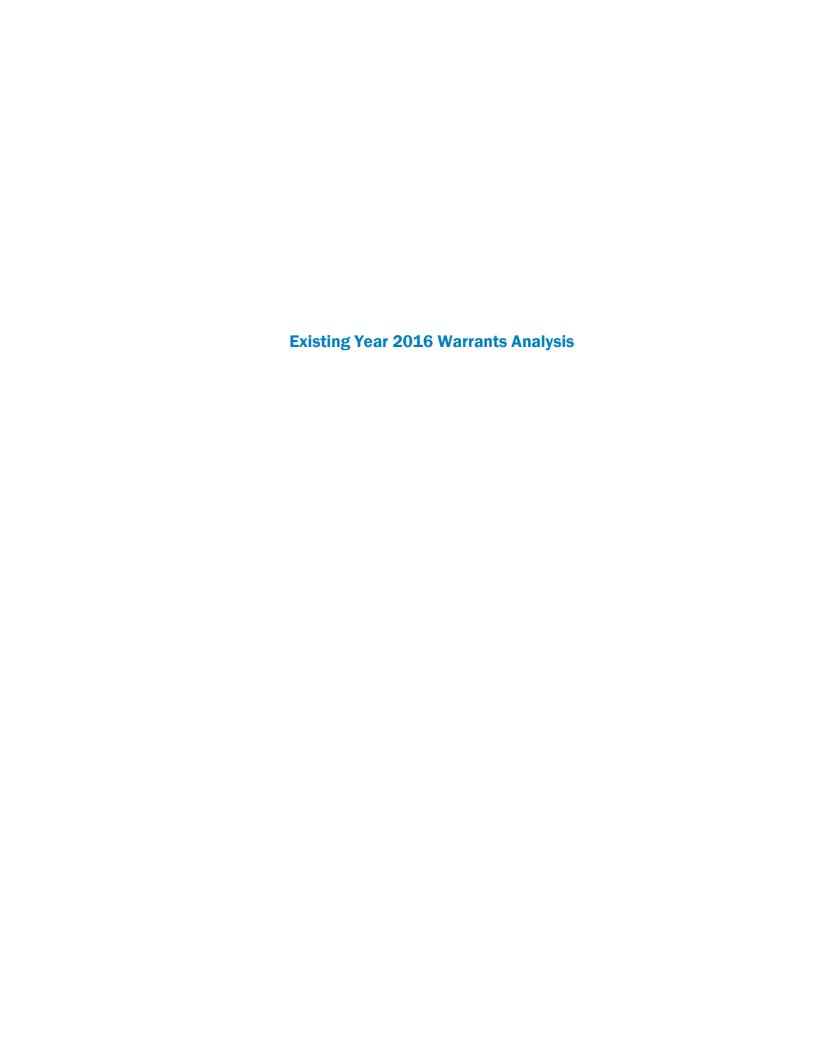
Unit 3

First Event: ON ROADWAY

Diagram: LEFT TURN INTO TRAFFIC

Speed Limit: 30

Officer:


000+00.812

Selection Filter:

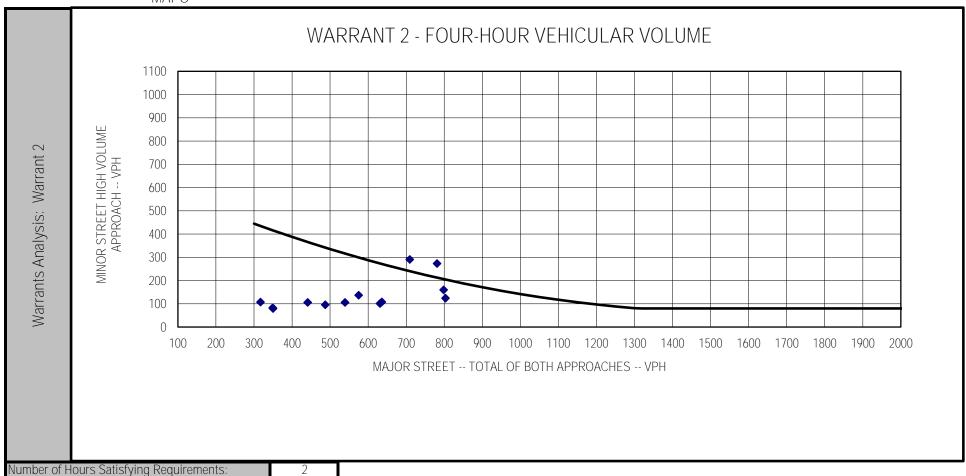
WORK AREA: Statewide - FILTER: CRASH_YEAR('2011','2012','2013','2014','2015'), TRAFFIC_CONTROL_DEVICE_CODE('03') - SPATIAL FILTER APPLIED

Analyst:	Notes:

Luke James

WARRANTS ANALYSIS Existing Year 2016

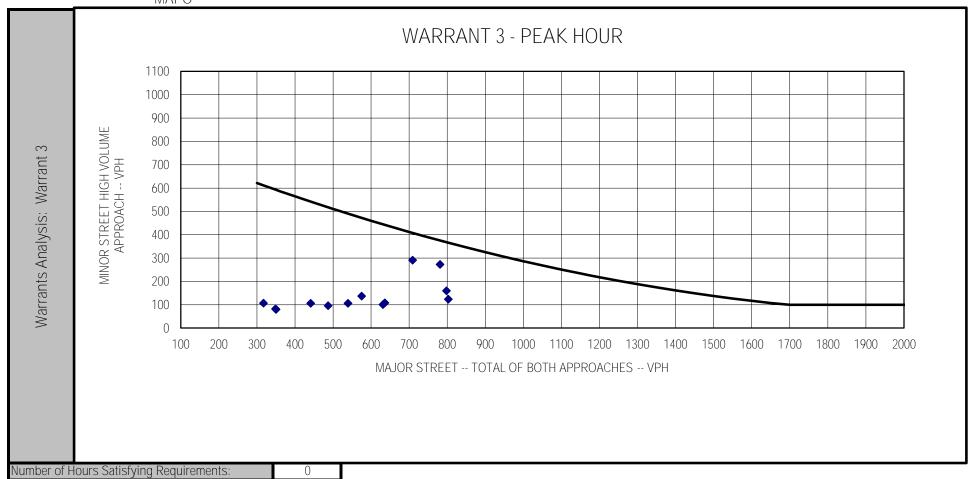
Lor Ray Drive at Howard Drive
Intersection Control Evaluation Studies
MAPO


br no	Location: MAPO	Speed (mph)	Lanes	Approach
roun	Date: 9/28/2016	30	2 or more	Major Approach 1: Northbound Lor Ray Drive
gra	Analysis Prepared By: Luke James	30	2 or more	Major Approach 3: Southbound Lor Ray Drive
Backgr	Population Less than 10,000:	30	1	Minor Approach 2: Eastbound Howard Drive
Ba	Seventy Percent Factor Used: No	30	1	Minor Approach 4: Westbound Howard Drive

	Major Major Total Warrant Met		Minor	Minor	Largest	Warra	nt Met	Met Same Hours		Combination		MWSA (C)					
\circ	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	150	75	Condition A	Condition B	А	В	300	200
-	6 - 7 AM	128	189	317			15	107	107		Χ					Χ	
and	7 - 8 AM	346	435	781	Χ		168	273	273	Χ	Χ	X		Χ	Χ	Χ	Χ
<u>8</u>	8 - 9 AM	342	233	575			137	134	137		Χ			Χ		Χ	Χ
	9 - 10 AM	194	156	350			80	61	80		Χ					Χ	
₹	10 - 11 AM	208	141	349			56	83	83		Χ					Χ	
Its .	11 - 12 AM	307	134	441			106	64	106		Χ					Χ	
Warrants	12 - 1 PM	352	187	539			106	102	106		Χ					Χ	Χ
/arı	1 - 2 PM	321	166	487			58	96	96		Χ					Χ	
	2 - 3 PM	442	194	636	Χ		105	108	108		Χ					Χ	Χ
<u></u>	3 - 4 PM	496	213	709	Χ		291	113	291	Χ	Χ	Χ		Х		Χ	Χ
<u> </u>	4 - 5 PM	575	223	798	Χ		160	139	160	Χ	Х	Χ		Х	Χ	Χ	Χ
na	5 - 6 PM	600	203	803	X		120	124	124		X			Х	Χ	X	Χ
4	6 - 7 PM	433	198	631	Χ		80	101	101		Χ					Χ	
ants																	
Warrants Analysis:																	
X																	
												2	0	Г	2		7
		Marrant	and Deceriat	lon			Hours Met Hours Required					3 0 5 3 7 Met/Not Met					/
	Warrant and Description						Hours Met Hours I			Require							
± 5	Warrant 1A: Minimum Vehicular Volume						3			ŏ o				Not Met			
Warrant Summary	Warrant 1B: Interruption of Continuous Traffic						2			ŏ		Not Met					
/ar	Warrant 1C: Combination of Warrants			ე ე			0		Not Met								
N S	Warrant 2: Four-Hour Vehicular Volume				2			4				Not Met Not Met					
Warrant 3B: Peak Hour				U			8 Not Met										
	MWSA (C):	iviuitiway 310	u Applications	CUHUIII	UII C		/			U				INOLIVIEL			

Existing Year 2016

Lor Ray Drive at Howard Drive Intersection Control Evaluation Studies MAPO

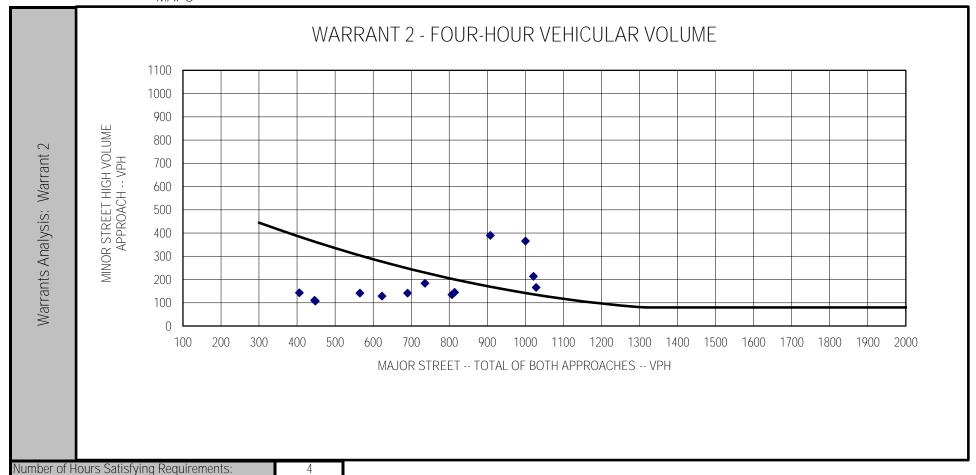


Notes: 1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Existing Year 2016

Lor Ray Drive at Howard Drive Intersection Control Evaluation Studies MAPO

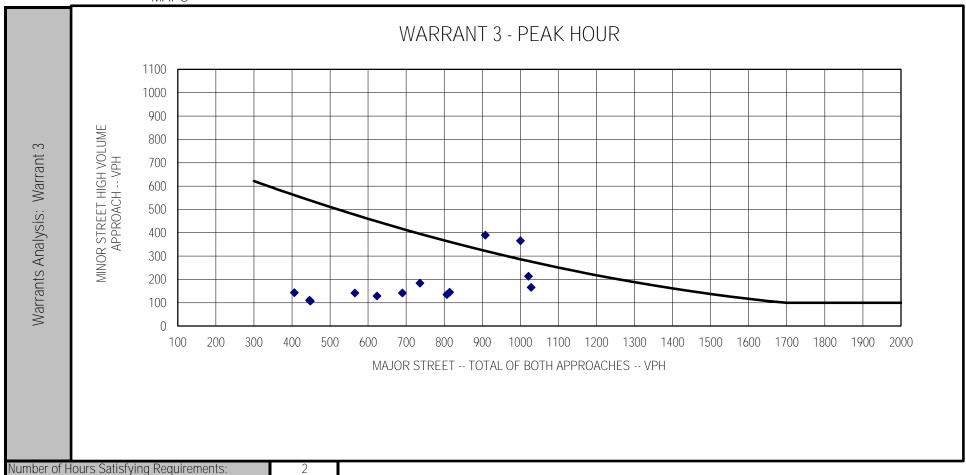
1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS Notes: THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.



Lor Ray Drive at Howard Drive
Intersection Control Evaluation Studies
MAPO

br no	Location: MAPO	Speed (mph)	Lanes	Approach
roun	Date: 9/28/2016	30	2 or more	Major Approach 1: Northbound Lor Ray Drive
gra	Analysis Prepared By: Luke James	30	2 or more	Major Approach 3: Southbound Lor Ray Drive
Backgr	Population Less than 10,000:	30	1	Minor Approach 2: Eastbound Howard Drive
Ba	Seventy Percent Factor Used: No	30	1	Minor Approach 4: Westbound Howard Drive

		Major	Major	Total	Warra	ınt Met	Minor	Minor	Largest	Warra	nt Met	Met Sam	ne Hours	Comb	ination	MWS	6A (C)	
	Hour	Approach 1	Approach 3	1 + 3	600	900	Approach 2	Approach 4	Minor App.	150	75	Condition A	Condition B	А	В	300	200	
7	6 - 7 AM	164	242	406			20	143	143		Χ					Χ		
and	7 - 8 AM	443	557	1000	Χ	Χ	225	366	366	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
1B 9	8 - 9 AM	438	298	736	Χ		184	180	184	Χ	Χ	Χ		Χ	Χ	Χ	Χ	
_	9 - 10 AM	248	200	448			107	82	107		Χ					Χ		
₹	10 - 11 AM	266	180	446			75	111	111		Χ					Χ		
TS .	11 - 12 AM	393	172	565			142	86	142		Χ			Χ		Χ	Χ	
Warrants	12 - 1 PM	451	239	690	Χ		142	137	142		Χ			Χ		Χ	Χ	
arı/arı	1 - 2 PM	411	212	623	Χ		78	129	129		Χ			Χ		Χ	Χ	
*	2 - 3 PM	566	248	814	Χ		141	145	145		Χ			Χ	Χ	Χ	Χ	
<u></u>	3 - 4 PM	635	273	908	Χ	Χ	390	151	390	X	Χ	Х	Χ	Χ	Χ	Χ	Χ	
<u> </u>	4 - 5 PM	736	285	1021	Χ	Χ	214	186	214	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
na.	5 - 6 PM	768	260	1028	Χ	Χ	161	166	166	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	
\forall	6 - 7 PM	554	253	807	Χ		107	135	135		Χ			Х	Χ	Χ	Χ	
l ↓																		
17.9																		
Warrants Analysis:																		
												_	,	4.0				
		\ \ \ \ \									5	5 4 10 7 10						
	Μ		and Descript				Hours Met Hours Required			ed	Met/Not Met							
+ >	Warrant 1A:	Minimum Veh					5			8				Not Met				
Warrant Summary	Warrant 1B: Interruption of Continuous Traffic						4		8		Not Met							
arr mr	Warrant 1C: Combination of Warrants						/		8			Not Met						
N Su	Warrant 2:	Four-Hour Ve	enicular volum	е			4		4			Met - Warrant 2 Satisfied						
Warrani 3B: Peak Hour							2)		0		Met - Warrant 3B Satisfied						
MWSA (C): Multiway Stop Applications Condition C							1(J		8 Met - Multiway Stop Applications								


Lor Ray Drive at Howard Drive Intersection Control Evaluation Studies MAPO

Notes: 1. 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Forecasted Year 2036

Lor Ray Drive at Howard Drive Intersection Control Evaluation Studies MAPO

Notes: 1. 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Existing Year 2016 Detailed Operational Analysis

All-Way Stop Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.2	0.2	0.1	0.8
Denied Del/Veh (s)	3.2	3.1	1.8	0.8	2.0
Total Delay (hr)	8.0	4.0	3.5	3.0	11.3
Total Del/Veh (s)	11.3	51.3	26.7	24.0	27.9
Stop Delay (hr)	0.7	4.0	3.3	2.5	10.5
Stop Del/Veh (s)	10.2	51.3	25.2	19.9	25.9
Total Stops	256	280	387	418	1341
Stop/Veh	0.99	1.00	0.83	0.92	0.92

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	TR	L	T	L	Т	TR	
Maximum Queue (ft)	40	57	143	231	317	301	203	31	229	194	
Average Queue (ft)	14	18	66	117	83	113	57	4	109	71	
95th Queue (ft)	39	48	118	235	364	277	225	20	194	165	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)			7	20		6	0		2	0	
Queuing Penalty (veh)			3	6		9	1		6	1	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.1	0.1	0.0	0.4
Denied Del/Veh (s)	3.4	3.4	0.6	0.5	1.2
Total Delay (hr)	0.1	0.2	1.2	0.6	2.1
Total Del/Veh (s)	4.0	5.6	6.7	7.8	6.5
Stop Delay (hr)	0.1	0.2	0.5	0.3	1.1
Stop Del/Veh (s)	3.3	4.5	3.1	3.7	3.5
Total Stops	127	134	429	246	936
Stop/Veh	0.99	0.99	0.68	0.95	0.81

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	L	T	TR	
Maximum Queue (ft)	33	31	67	80	34	52	129	30	93	53	
Average Queue (ft)	9	4	36	41	5	24	58	5	49	23	
95th Queue (ft)	32	21	57	66	25	43	94	23	77	49	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)			0								
Queuing Penalty (veh)			0								

Existing Year 2016 Detailed Operational Analysis

Traffic Signal Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.3	0.3	0.1	0.9
Denied Del/Veh (s)	3.5	3.4	2.0	0.9	2.2
Total Delay (hr)	0.8	2.0	1.6	2.6	7.0
Total Del/Veh (s)	10.9	25.0	12.2	20.4	17.1
Stop Delay (hr)	0.7	1.8	1.3	2.0	5.8
Stop Del/Veh (s)	9.5	22.1	10.1	15.8	14.1
Total Stops	225	235	260	292	1012
Stop/Veh	0.88	0.81	0.56	0.63	0.69

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	L	T	TR	
Maximum Queue (ft)	50	83	128	225	160	214	106	28	227	215	
Average Queue (ft)	13	19	58	117	27	86	33	3	126	72	
95th Queue (ft)	42	60	102	197	112	159	77	19	206	174	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)		0	2	5	0	0			2	0	
Queuing Penalty (veh)		1	1	2	0	0			6	1	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.1	0.1	0.1	0.0	0.4
Denied Del/Veh (s)	3.8	3.8	0.6	0.5	1.3
Total Delay (hr)	0.2	0.5	1.2	0.7	2.7
Total Del/Veh (s)	6.3	14.0	6.6	10.4	8.3
Stop Delay (hr)	0.2	0.5	0.7	0.5	1.9
Stop Del/Veh (s)	5.6	12.7	3.9	7.5	5.9
Total Stops	110	100	203	125	538
Stop/Veh	0.87	0.74	0.32	0.48	0.46

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	L	Т	TR	
Maximum Queue (ft)	39	31	67	122	31	69	177	35	142	111	
Average Queue (ft)	8	4	37	55	4	26	75	4	60	17	
95th Queue (ft)	30	21	59	97	20	53	142	21	111	58	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)			0	0					0	0	
Queuing Penalty (veh)			0	0					0	0	

Existing Year 2016 Detailed Operational Analysis

Roundabout Control (HCS)

					ROU	INDABO	UT REP	ORT								
Gonoral Information							Sita Inc	form	atio:	n						
General Information Analyst Luke J Agency or Co. SRF C Date Performed 8/5/20 Time Period A.M. F Peak Hour Factor 1.00	Consultii 16	ng Groi	ıp, Inc.			Site Information Intersection Lor Ray Drive at Howard Drive E/W Street Name Howard Drive N/S Street Name Lor Ray Drive Analysis Year 2016 Project ID 9243										
Project Description:																
Volume Adjustment an	d Site	Chara	cterist	ics												
		El	3			V	/B				NB			SE	}	
	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		0	1	1		0	2	0	
Lane Assignment			LTF	7			LTF	?		LT	F	₹	LT			TR
Right-Turn Bypass		None				No	ne			١	lone			Nor	ie	
Conflicting Lanes		1					1			-	1			1		
Volume (V), veh/h	15	20	220	0	250		0	0	24			0		390	55	0
Heavy Veh. Adj. (f _{HV}), %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing	<u> </u>	0				()				0			0		
Critical and Follow-Up	Headu	vay Ad		ent		l	14/5									
			EB	, I _D			WB	l _D			NB	I _D	1 6	S		
Critical Handway (222)		Left 5.1929	Righ 5.192	_	ypass	Left 5.1929	Right 5.1929	Byp:	\rightarrow	Left 5.1929	Right 5.1929	Bypass 5.1929		Rig 5.19	_	Bypas: 5.1929
Critical Headway (sec) Follow-Up Headway (sec)			3.185	-	. 1929	3.1858	3.1858	5.18	-+		3.1858	5.1929	3.1858			5.1929
Flow Computations		3.7000) J. 100	, <u>o</u>		3.7000	3.7000			3.1000	3.7000		3.7000	3.70	,50	
Tow Computations			EB				WB				NB			S	 В	
		Left	Righ	ıt İB	ypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	Rig		Bypas
Circulating Flow (V _c), pc/h			658		71		408	71			40	71		53		71
Exiting Flow (V _{ex}), pc/h			107				337				158			87	7	
Entry Flow (V _e), pc/h			260				286			393	82		216	24	:3	
Entry Volume veh/h			255				280			385	80		212	23	8	
Capacity and v/c Ratios	5	•	1				!					•				
			EB				WB				NB			S	В	
		Left	Righ	t B	ypass	Left	Right	Вур	ass	Left	Right	Bypass	Left	Rig	ght	Bypas
Capacity (c _{PCE}), pc/h			585				751			1085	1085		661	66	1	
Capacity (<i>c</i>), veh/h			574				737			1064	1064		649	64	9	
v/c Ratio (X)			0.44	!			0.38			0.36	0.08		0.33	0.3	37	
Delay and Level of Serv	vice					•										
			EB				WB				NB			S		
		Left	Righ	_	ypass	Left	Right	Вура	ass	Left	Right	Bypass		Rig		Bypas
Lane Control Delay (d), s/ve	eh		13.4	<u> </u>			9.8	_	_	7.1	4.0		9.8	10		
Lane LOS			В	+			A	<u> </u>	_	A	A		A	E		
Lane 95% Queue			2.3				1.8		\dashv	1.7	0.2		1.4	1.		
Approach Delay, s/veh			13.4	1			9.75		_		6.57		-	10.		
Approach LOS, s/veh			В				Α				Α		В			
Intersection Delay, s/veh									9.5 A							
Intersection LOS		<u> </u>							A							

					ROL	INDABO	UT REP	ORT								
General Information							Site Int	form	atio	n e						
Analyst Luke Agency or Co. SRF Date Performed 8/5/2 Time Period P.M. Peak Hour Factor 1.00	Peak	ng Gro	up, Inc.				Intersection Lor Ray Drive at Howard Drive E/W Street Name Howard Drive N/S Street Name Lor Ray Drive Analysis Year 2016 Project ID 9243									
Project Description:																
Volume Adjustment a	nd Site	Chara	cteris	tics				1								
		E				W					NB				SB T	
	L	Т	R	U	L	T	R	U	L		R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		0		1		0	2	0	
Lane Assignment		LTR					LTF	?		LT	F	₹	LT			TR
Right-Turn Bypass		No					ne			<u> </u>	lone			N	one	
Conflicting Lanes		1	'				1				1				1	_
Volume (V), veh/h	10	5	110	0	130	_	0	0	70			0	-	235	10	0
Heavy Veh. Adj. (f _{HV}), %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing		0				()				0				0	
Critical and Follow-U) Heady	vay Ad	ljustm	ent												
			El	3			WB				NB				SB	
		Left	Rig	ıht l	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	: F	Right	Bypass
Critical Headway (sec)		5.192	9 5.19	29	5.1929	5.1929	5.1929	5.19	29	5.1929	5.1929	5.1929	5.192	9 5.	1929	5.1929
Follow-Up Headway (sec)		3.185	3.18	58		3.1858	3.1858			3.1858	3.1858		3.185	8 3.	1858	
Flow Computations							•			•						
			El	3			WB				NB				SB	
		Left	Rig	ıht l	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	: F	Right	Bypass
Circulating Flow (V _c), pc/r	1		37	8			453				20	•			209	
Exiting Flow (V _{ex}), pc/h			20	9			87				383				485	
Entry Flow (V _e), pc/h			12	7			138			444	199		120		135	
Entry Volume veh/h			12	5			135			435	195		118		132	
Capacity and v/c Ratio	os		ļ				•						!	-		
			El	3			WB				NB				SB	
		Left	Rig	ht I	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	: F	Right	Bypass
Capacity (c _{PCE}), pc/h			77	5			718			1107	1107		917		917	
Capacity (c), veh/h			76	0			704			1085	1085		899		399	
v/c Ratio (X)			0.1	6			0.19			0.40	0.18		0.13	3 ().15	
Delay and Level of Se	rvice	<u> </u>	<u> </u>										<u> </u>			
			El	 3			WB				NB				SB	
		Left	Rig		Bypass	Left	Right	Вура	ass	Left		Bypass	Left		Right	Bypass
Lane Control Delay (d), s/	veh		6.5	-+			7.3			7.5	4.9		5.3	_	5.4	
Lane LOS		A A					A			A	Α		Α	\top	Α	
Lane 95% Queue		0.6					0.7			2.0	0.7		0.4		0.5	
Approach Delay, s/veh		6.48					7.29	'	6.73				5.35			
Approach LOS, s/veh		6.48 A				A A					A					
Intersection Delay, s/veh						I	-		6.4	<u>. </u>	-		ļ.			
Intersection LOS									-/							
		1														

Existing Year 2016 Detailed Operational Analysis

Roundabout Control (RODEL)

RODEL						_
10:10:16 E (m) L' (m) 4 U (m) RAD (m) 2 PHI (d) 3	8.00 4. 10.00 40. 7.30 3. 20.00 20. 30.00 30. 50.00 45.	00 40.00 65 3.65 00 20.00 00 30.00	RAY HOWARD 4.00 40.00 3.65 20.00 30.00 45.00	T	CL IME PERIOD IME SLICE ESULTS PERIOD IME COST LOW PERIOD LOW TYPE pcu LOW PEAK am/o	min 90 min 15 min 15 min 15 75 \$/hr 15.00 min 15 75
EB HOWARD 1.	.02 55 .02 220	390 5 20 15 140 245 30 250	2nd etcU 9 0 0 0	1.00 50 1.00 50 1.00 50	0.75 1.125 0 0.75 1.125 0).75 15 45 75).75 15 45 75).75 15 45 75
77.01			10DE 2			
CAPACITY AVE DELAY MAX DELAY MAX QUEUE MAX QUEUE	veh 19 nins 0. nins 0. veh veh	04 0.10 05 0.14 0 0	1164 9 0.08 0. 0.11 0. 1	11 0 0	L UEH COS	
F1mode F2dix	rect F3pe	ak Ctr1F3ı	rev F4fact	F6stats	F8econ F9pr	nt F10run Esc

RODEL												1×
10:10:16		92	43 LOF	RAY HO	WARD 2	016 5	50 (L			17	
E (m)	8.00	4.00	4.00	4.00				ME PER	IOD	mir	90	
L' (m)	40.00	40.00	40.00	40.00			T	ME SLI	CE	mir	15	
U (m)	7.30	3.65	3.65	3.65			$\mathbf{R}\mathbf{I}$	ESULTS	PERI	OD mir		
RAD (m)	20.00	0 20.00	20.00	20.00			T1	ME COS		\$/hı	15.00	
PHI (d)	30.00	30.00	30.00	30.00			\mathbf{FI}	LOW PER	II OD	mir	15 75	
DIA (m)	50.00		45.00	45.00			FI	LOW TYP	E p	cu/vel	1 VEH	
GRAD SEP	Ø	0	Ø	Ø			FI	LOW PEA	K am.	∕ор/рг	n PM	
LEG NAME		LOWS (1st		2nd etc		FLOF	\mathbf{CL}	FLOW			FLOW TI	ME
	1.02	10 235		Ø		1.00	50	0.751				
	1.02	110 5		Ø			50	0.751		0.75		
	1.02	195 365		Ø				0.751				
WB HOWARD	1.02	0 5	130	Ø		1.00	50	0.75 1	.125	Ø.75	15 45 7	5
				MARE O								
TITOU		OF G	400	MODE 2	425							
FLOW	veh	250	125	630	135					IDEI .		a
CAPACITY AUE DELAY	veh mins	2213	989 0.07	1175	949					UDEL S		
		0.03 0.04		0.11	0.07				L		•	Ą
MAX DELAY	mins		0.09	0.15	0.09					EH HRS		
MAX QUEUE	veh	9 9	9 9	1	Ø Ø					OST S	23.	0
	veh lirect		Ctr1F3	mou Ed				F8econ	PO.	prnt	F10run	La c
rimoue rzo	trect	гэреак	GUPIF	rev r4	ract r	6stat	.5	roecon	F7	priit	riorun .	Esc

€ R	ODEL																	_	
	10:1	0:16			92	243 LOF	RAY	HC	WARD 2	2016 8	35 (CL						1	L 6
E		(m)	8.6	10 4.	.00	4.00	4.	00			T	MIE	\mathbf{PE}	RIOL		mir	1	9	10
L		(m)	40.0	10 40.	.00	40.00	40.	00			T	1112	\mathbf{SL}	I CE		mir		1	L5
U		(m)	7.3		.65	3.65	3.	65			RI	ESUI	LTS	PER	IOD) mir	1	15 7	75
III R	AD	(m)	20.0	10 20.	.00	20.00	20.	00			T	MIE	CO	ST		\$/h	. 1	15.0	3 0
III P	HΙ		30.0	10 30.	.00	30.00	30.	00			FI	LOW	\mathbf{PE}	RIOD		min	1	15 7	75
		(m)	50.0	10 45.	.00	45.00	45.	00			FI	LOW	TY:	PE	peu	ı∕ve]	h	VI	EH
III G	RAD	SEP		0	Ø	Ø		Ø			FI	LOW	\mathbf{PE}	AK a	m/o	p/pi		f	AM
ш																			
	EG N	AME	PCU	FLOWS	(1st	exit	2nd	etc	(U:	FLOF	\mathbf{CL}		FLO	W RA	TIC		$\mathbf{FL}($)W 1	HME
SB	LOR	RAY	1.02	55	390	3 5	Ø			1.00	85	0.1	75 :	1.12	50	1.75	15	45	75
EB		ARD	1.02	220	26		Ø			1.00				1.12		1.75		45	75
NB			1.02	80	140	245	Ø			1.00						1.75		45	
WB	HOW	ARD	1.02	Ø	36	3 250	Ø			1.00	85	0.1	75 :	1.12	50	1.75	15	45	75
							MODE												
F	LOW		vel		ł50	255		65	286										
III C	APAC		vel		772	639		61	776							EL :		6	5.2
III A	UE D	ELAY	mins		.04	0.16		12	0.12							0	3		A
M	AX D	ELAY	mins		. 06	0.22	0.	16	0.17	?					UEH		3		2.5
III A	VE Q	UEUE	vel		Ø	1		1	1						COS	T :	7	37	7.2
M	AX Q	UEUE	vel		Ø	1		1	1										
F1m	ode	F2d	lirect	: F3pe	ak	Ctr1F3	rev	F4	lfact I	?6stat	ts	F86	eco	n F	9pr	'nt	F10	drur	n Esc

RODEL										_ X
10:10:16		92	43 LOF	RAY HO	WARD 2	016 8	15 (CL		17
E (m)	8.0	0 4.00	4.00	4.00			Tl	ME PERI	OD mir	90
L' (m)	40.0		40.00	40.00			TI	ME SLIC		
U (m)	7.3		3.65	3.65			$\mathbf{R}\mathbf{I}$		ERIOD mir	
RAD (m)	20.0		20.00	20.00				ME COST	\$/hi	
PHI (d)	30.0		30.00	30.00			FI	OW PERI		
DIA (m)	50.0		45.00	45.00			R)	OW TYPE	pcu/vel	1 VEH
GRAD SEP		0 0	0	0			FI	JOW PEAK	am/op/pr	n PM
TEO NAME	DOIL 1	DI ALIO 24 - 4		0-3-4-	118	ET AE	OT	TIT OU	DATIA	DI OUL TIME
SB LOR RAY	PCU 1.02	FLOWS (1st 10 235		2nd etc		FLOF 1.00	CL 85		RATIO 125 0.75	15 45 75
	1.02	110 235		9 9			85	0.75 1. 0.75 1.		
	1.02	195 365		0		1.00			125 0.75	
	1.02	173 303		Ø		1.00			125 0.75	
MD HOMUND	1.02	0 3	130	0		1.00	0.5	6.13 I.	123 6.73	10 10 10
				MODE 2			_			
FLOW	veh	250	125	630	135					
CAPACITY	veh		786	972	746				AUDEL s	7.5
AUE DELAY	mins	0.03	0.09	0.18	0.10				L 0 8	
MAX DELAY	mins		0.12	0.26	0.13				UEH HRS	
AVE QUEUE	veh		Ø	2	Ø				COST	35.8
MAX QUEUE	veh		0	2	0					
F1mode F2d	lirect	F3peak	Ctr1F3	rev F4	fact F	6stat	S	F8econ	F9prnt	F10run Esc

Forecasted Year 2036 Detailed Operational Analysis

All-Way Stop Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.3	14.5	6.0	0.2	21.0
Denied Del/Veh (s)	3.2	137.2	36.4	1.1	40.2
Total Delay (hr)	5.0	31.0	20.7	12.5	69.3
Total Del/Veh (s)	53.0	317.2	126.4	78.0	134.1
Stop Delay (hr)	5.0	32.3	21.1	12.2	70.6
Stop Del/Veh (s)	53.3	330.0	128.7	75.9	136.7
Total Stops	348	229	525	582	1684
Stop/Veh	1.03	0.65	0.89	1.01	0.91

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	T	TR	
Maximum Queue (ft)	230	453	180	250	1012	400	936	870	129	661	280	
Average Queue (ft)	31	128	118	246	774	302	442	259	10	278	174	
95th Queue (ft)	137	440	200	283	1202	502	1121	960	83	621	319	
Link Distance (ft)		954			966		954	954		966		
Upstream Blk Time (%)					43		26	11		1		
Queuing Penalty (veh)					0		0	0		0		
Storage Bay Dist (ft)	150		80	150		300			180		180	
Storage Blk Time (%)		0	44	97		57	1			36	29	
Queuing Penalty (veh)		0	21	39		103	4			129	80	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.2	0.1	0.0	0.5
Denied Del/Veh (s)	3.4	3.3	0.6	0.5	1.3
Total Delay (hr)	0.2	0.4	2.3	8.0	3.8
Total Del/Veh (s)	5.1	7.2	10.1	9.3	9.0
Stop Delay (hr)	0.2	0.3	1.4	0.5	2.4
Stop Del/Veh (s)	4.2	6.0	6.2	5.0	5.7
Total Stops	164	191	565	306	1226
Stop/Veh	1.00	0.99	0.68	0.95	0.81

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	R	L	Т	TR	
Maximum Queue (ft)	38	31	82	93	33	62	236	15	31	115	66	
Average Queue (ft)	12	6	42	49	10	28	95	0	5	58	28	
95th Queue (ft)	37	26	68	79	34	51	177	7	22	94	56	
Link Distance (ft)		954			966		954	954		966		
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	150		80	150		300			180		180	
Storage Blk Time (%)			0				0			0		
Queuing Penalty (veh)			0				0			0		

Forecasted Year 2036 Detailed Operational Analysis

Traffic Signal Control

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.3	0.4	0.3	0.2	1.2
Denied Del/Veh (s)	3.4	3.3	2.0	1.0	2.2
Total Delay (hr)	1.8	3.6	5.0	5.9	16.2
Total Del/Veh (s)	18.4	32.7	30.5	36.0	30.4
Stop Delay (hr)	1.6	3.0	4.3	4.8	13.8
Stop Del/Veh (s)	16.6	28.0	26.6	29.4	25.9
Total Stops	303	303	368	453	1427
Stop/Veh	0.87	0.77	0.63	0.77	0.75

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	L	T	TR	
Maximum Queue (ft)	100	270	179	249	434	389	521	78	430	279	
Average Queue (ft)	20	41	88	167	75	175	104	6	201	159	
95th Queue (ft)	71	154	155	269	285	353	366	46	332	280	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)		1	13	17	0	8	0		14	6	
Queuing Penalty (veh)		2	7	7	0	16	0		50	17	

Approach	EB	WB	NB	SB	All
Denied Delay (hr)	0.2	0.2	0.1	0.0	0.6
Denied Del/Veh (s)	3.8	3.7	0.7	0.6	1.4
Total Delay (hr)	0.3	0.9	1.8	1.1	4.2
Total Del/Veh (s)	7.5	17.0	8.1	12.7	10.2
Stop Delay (hr)	0.3	8.0	1.1	8.0	3.0
Stop Del/Veh (s)	6.6	15.4	4.7	9.4	7.3
Total Stops	144	143	283	175	745
Stop/Veh	0.88	0.76	0.35	0.54	0.50

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	SB	
Directions Served	L	T	R	L	TR	L	T	L	Т	TR	
Maximum Queue (ft)	44	33	80	153	37	86	236	33	168	134	
Average Queue (ft)	13	6	42	75	6	32	108	5	83	26	
95th Queue (ft)	39	25	66	126	26	64	194	24	142	83	
Link Distance (ft)		954			966		954		966		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	150		80	150		300		180		180	
Storage Blk Time (%)			0	0			0		0	0	
Queuing Penalty (veh)			0	0			0		0	0	

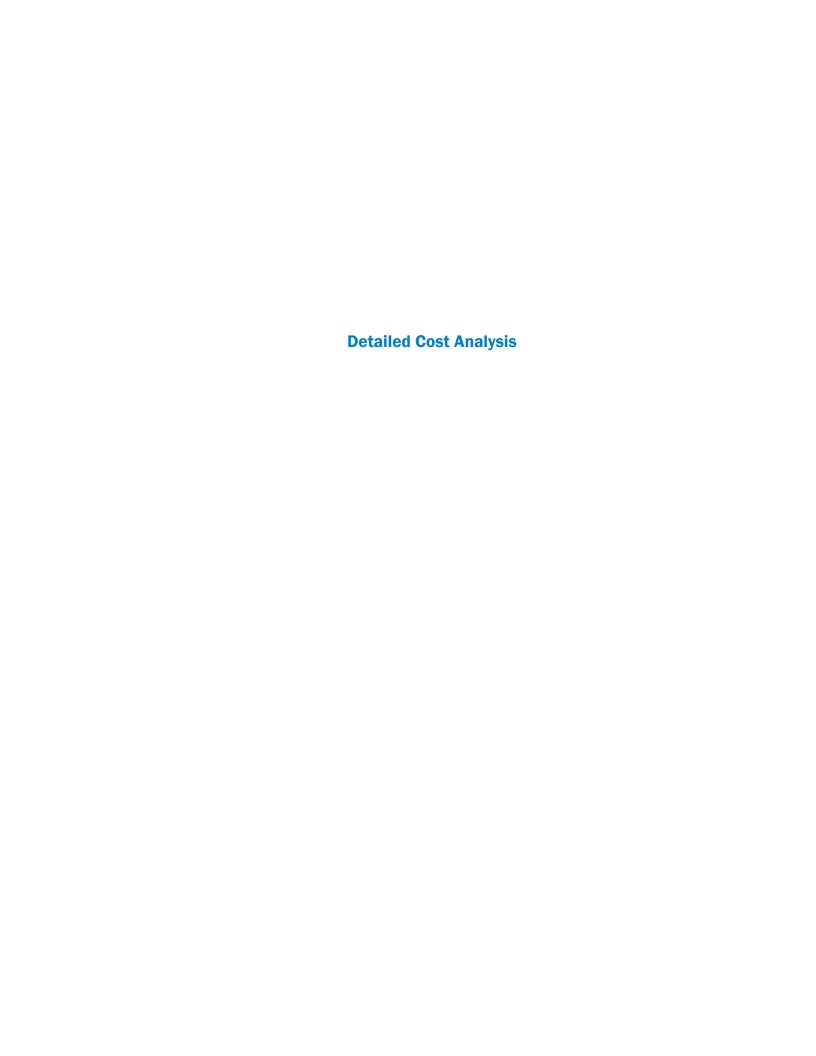
Forecasted Year 2036 Detailed Operational Analysis

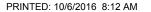
Roundabout Control (HCS)

					ROL	INDABO	UT REP	ORT								
General Information							Site Inf	form:	atio	nn .						
Analyst Lui Agency or Co. SR Date Performed 8/5 Time Period A.I Peak Hour Factor 1.0	ke James RF Consulti 5/2016 M. Peak	ing Gro	ıр, Inc.				Intersec E/W Stre N/S Stre Analysis Project I	tion eet Na eet Na s Year	ame	Lor F	ard Drive Pay Drive		ard Dri	ve		
Project Description:																
Volume Adjustment	and Site			tics					1							
	<u> </u>	E _			+.	W					NB T _	 	. 1		SB T =	Τ
	L	T	R	U	L	T	R	U	L	_	R	U	L		R	U
Number of Lanes (N)	0	1	0		0	1	0		0		1		0	2	0	
Lane Assignment			L7	R			LTR			LT	<i>F</i>	۲	LI	LT TR		
Right-Turn Bypass		No			-	No				N	lone					
Conflicting Lanes		1			1	1			_		1		_ 1		1	1.
Volume (V), veh/h	20	25	295	0	340		0	0	31		100	0	5	500	70	0
Heavy Veh. Adj. (f _{HV}), %	6 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing		C)			()									
Critical and Follow-	Up Headv	vay Ac	ljustm	ent												
			El	3			WB				NB				SB	
		Left	Rig	-	Bypass		Right	Вура	_			Bypass	Lef	-	Right	Bypass
Critical Headway (sec)		5.192	9 5.19			5.1929	5.1929	5.19	29	5.1929	5.1929	5.1929	5.192	9 5.	1929	5.1929
Follow-Up Headway (se	ec)	3.185	3.18	58		3.1858	3.1858			3.1858	3.1858		3.185	8 3.	1858	
Flow Computations													1			
			El	3			WB				NB				SB	
		Left	Rig	ht I	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	: F	Right	Bypass
Circulating Flow (V _c), po	c/h		86	2			514				51				704	
Exiting Flow (V _{ex}), pc/h			13	3			428				199			1	158	_
Entry Flow (V _e), pc/h			34	7			388			495	102		276	;	311	
Entry Volume veh/h			34	0			380			485	100		271	;	305	
Capacity and v/c Ra	tios															
			El	3			WB				NB	_			SB	
		Left	Rig	ıht l	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Lef	: F	Right	Bypass
Capacity (c _{PCE}), pc/h			47	7			675			1074	1074		559		559	
Capacity (c), veh/h			46	8			662			1053	1053		548		548	
v/c Ratio (X)			0.7	'3			0.57			0.46	0.09		0.49		.56	
Delay and Level of S	Service															
			El	3			WB				NB				SB	
		Left	Rig	ıht [Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	: F	Right	Bypass
ane Control Delay (d), s/veh 29.2					15.4			8.6	4.3		15.3	3 1	7.3			
Lane LOS	ane LOS D						С			Α	Α		С		С	
Lane 95% Queue	ane 95% Queue 5.8						3.7			2.5	0.3		2.7	1	3.4	
Approach Delay, s/veh	oproach Delay, s/veh 29.20					15.39			7.87				16.33			
Approach LOS, s/veh						C A C										
Intersection Delay, s/vel	h								15.	84			-			
Intersection LOS						С										

					ROL	INDABO	UT REP	ORT								
General Information							Site Int	form	atio	n						
Analyst Luke J	Consultii 16	ng Grou	ıр, Inc.				Intersect E/W Str N/S Stre Analysis Project	tion eet Na eet Na Year	ame	Lor F	ard Drive Ray Drive		ard Driv	e		
Project Description:																
Volume Adjustment and	d Site	Chara	cteris	tics	;											
		E	В			V	/B				NB			SE	3	
	L	Т	R	U	L	Т	R	U	L	. Т	R	U	L	Т	R	U
Number of Lanes (N)	0	1	0		0	1	0		0		1		0	2	0	
Lane Assignment			LT	R			LTF	?		LT	F	₹	LT			TR
Right-Turn Bypass		No	ne			No	ne			N	lone			Nor	ie	
Conflicting Lanes		1				-1	1 _				1			1		
Volume (V), veh/h	15	5	145	0			5	0	90			0		300	15	0
Heavy Veh. Adj. (f _{HV}), %	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pedestrians Crossing		0				()				0			0		
Critical and Follow-Up	Headw	vay Ao ∣			'	1	NA/D				ND					
		Loft	EE		Dynasa	Left	WB	Dvn		l off	NB Dight	Dynasa	Left	S		Dynas
Critical Headway (sec)		Left 5.1929	Rig 9 <i>5.19</i>	\rightarrow	Bypass 5 1020	5.1929	Right 5.1929	5.19	_	Left 5.1929	Right 5.1929	Bypass 5.1929		Rig 9 <i>5.1</i> 9		Bypas: 5.1929
Follow-Up Headway (sec)			3.18	\rightarrow	5.1929	3.1858	3.1858	3.13	,29		3.1858	3.1929	3.185	-		3.1929
Flow Computations		0.7000	7 0.70			0.7000	0.7000			0.7000	0.7000		0.700	7 10.70	,00	
			EE	3			WB				NB			S	В	
		Left	Rig	ht	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	Left	Rig		Bypas
Circulating Flow (V _c), pc/h			489				586				25			27		
Exiting Flow (V _{ex}), pc/h			26	5			112				500			63	2	
Entry Flow (V _e), pc/h			168	8			189			571	255		153	17	'3	
Entry Volume veh/h			16	5			185			560	250		150	17	0	
Capacity and v/c Ratios	S		•									-				
			EE	3			WB				NB			S	В	
		Left	Rig	ht	Bypass	Left	Right	Вур	ass	Left	Right	Bypass	Left	Rig	ght	Bypas
Capacity (c _{PCE}), pc/h			693	-			629			1102	1102		858	85		
Capacity (c), veh/h			679	\rightarrow			616			1080	1080		841	84		
v/c Ratio (X)			0.2	4			0.30			0.52	0.23		0.18	0.2	20	
Delay and Level of Serv	vice															
		L	EE				WB	1_			NB	I_		S T =:	_	
		Left	Rig	-	Bypass	Left	Right	Вура	ass	Left	Right	Bypass	†	Rig		Bypass
Lane Control Delay (d), s/ve	eh		8.2	<u>'</u>			9.8			9.5	5.5		6.1	6.		
Lane LOS			A	\dashv			A 1.2			A 2.1	A		A 0.6	A		
Lane 95% Queue Approach Delay, s/veh			0.9 8.2				1.3 9.84			3.1	0.9 8.23		0.6	0. 6.2		
Approach LOS, s/veh			6.2 A				9.84 A				8.23 A			0.2 A		
Intersection Delay, s/veh			A			L			8.0	20					1	
Intersection LOS									0.0	,,						

Forecasted Year 2036 Detailed Operational Analysis


Roundabout Control (RODEL)


RODEL											_ ×
10:10::	16	92	43 LOR	RAY HO	WARD 2	036 5	0 (:L			16
E (m)	8.00	4.00	4.00	4.00			TI	ME PERI	[OD r	nin	90
L' (m	40.00	40.00	40.00	40.00			TI	ME SLIC	CE r	nin	15
U (m)	7.30		3.65	3.65			RI	SULTS I	PERIOD r	nin	15 75
RAD (m)		20.00	20.00	20.00			T	ME COST	5	hr	15.00
PHI (d)	30.00		30.00	30.00			FI	OW PERI	I OD		15 75
DIA (m			45.00	45.00			E	OW TYPE			VEH
GRAD SE			<u>-</u>	<u>-</u>				OW PEAT	K am/op/	/10m	AM
LEG NAM	E PCU F	LOWS (1st	exit	2nd etc	U)	FLOF	\mathbf{CL}	FLOW	RATIO	FL	OW TIME
SB LOR R	AY 1.02	70 500	5	Ø		1.00	50	0.75 1.	.125 0.7	75 15	45 75
EB HOWAR	D 1.02	295 25	20	0		1.00	50	0.75 1.	.125 0.7	75 15	45 75
NB LOR R	AY 1.02	100 175		Ø		1.00			125 0.7		
WB HOWAR	D 1.02	0 40		Ø		1.00	50	0.751	125 0.7	75 15	45 75
	_										
				MODE 2			_				
FLOW	veh	575	340	585	380						
CAPACIT		1852	736	1159	917				AUDEI		5.8
AUE DEL	AY mins	0.05	0.15	0.10	0.11				L O		A
MAX DEL	AY mins	0.06	0.23	0.14	0.15				VEH H	IRS	3.0
AVE QUE		- 0	1	1	1				COST	\$	45.4
MAX QUE		$\bar{1}$	1	1	1						
F1mode	F2direct	F3peak	Ctr1F3	rev F4	fact F	6stat	s	F8econ	F9prnt	F1	Orun Esc

RODEL				_ X
10:10:16 E (m) 8.00 L' (m) 40.00 U (m) 7.30 RAD (m) 20.00 PHI (d) 30.00 DIA (m) 50.00 GRAD SEP 0	40.00 40.00 3.65 3.65 20.00 20.00 30.00 30.00 45.00 45.00	R RAY HOWARD 2036 5 4.00 40.00 3.65 20.00 30.00 45.00	TIME PERIOD min TIME SLICE min RESULTS PERIOD min TIME COST \$/hr PLOW PERIOD min PLOW TYPE pcu/veh PLOW PEAK am/op/pm	90 15 15 15 75 15 .00 15 .75
LEG NAME SB LOR RAY 1.02 EB HOWARD 1.02 NB LOR RAY 1.02 WB HOWARD 1.02	LOWS (1st exit 15 300 5 145 5 15 250 470 90 5 5 175	0 1.00 0 1.00	CL FLOW RATIO 1 50 0.75 1.125 0.75 1 50 0.75 1.125 0.75 1 50 0.75 1.125 0.75 1 50 0.75 1.125 0.75 1	15 45 75
		MODE 2		
FLOW veh CAPACITY veh AVE DELAY mins MAX DELAY mins AVE QUEUE veh MAX QUEUE veh	320 165 2165 930 0.03 0.08 0.04 0.10 0 0	810 185 1172 880 0.17 0.08 0.25 0.11 2 0 3 0	AUDEL S L O S UEH HRS COST \$	7.1 A 2.9 43.8
F1mode F2direct	F3peak Ctr1F3	Brev F4fact F6stat	s F8econ F9prnt l	F10run Esc

RODEL										_ X
10:10:16		92	43 LOF	RAY HO	WARD 20	36 8	5 (L		17
E (m)	8.00	4.00	4.00	4.00			ΤI	ME PERI	OD min	1 90 I
L' (m)	40.00		40.00	40.00			ΤI	ME SLIC		
U (m)	7.30		3.65	3.65			$\mathbf{R}\mathbf{I}$	SULTS F	ERIOD min	
RAD (m) PHI (d)	20.00		20.00	20.00			ΤI	ME COST	\$/h:	
PHI (d)	30.00		30.00	30.00			\mathbf{FI}		OD min	
DIA (m)	50.00		45.00	45.00				OW TYPE	pcu/vel	h VEH
GRAD SEP	0	0	Ø	0			\mathbf{FI}	OW PEAR	am/op/pi	n AM
EB HOWARD NB LOR RAY	1.02 1.02	LOWS <1st 70 508 295 25 100 175 0 40	5 20 310	2nd etc 0 0 0 0	1 1 1	FLOF 1.00 1.00 1.00 1.00	85	0.75 1. 0.75 1. 0.75 1.	RATIO 125 0.75 125 0.75 125 0.75 125 0.75	15 45 75
				MODE 2						
FLOW	veh	575	340	585	380				AUDTT	40.0
CAPACITY	yeh	1650	533	956	714				AUDEL	10.0
MAX DELAY	mins	0.06	0.35	0.16	0.18				LO	B
THE PLANE IN	mins	0.08	0.59	0.23	0.27				UEH HR	
AVE QUEUE MAX QUEUE	veh	1	2 3	2 2	1 2				COST	78.5
THE LOCK	veh lirect	F3peak	Ctr1F3			istat		F8econ	EQuan+	F10run Esc
rimone rzu	tirect	гэреак	CCLIL2	rev r4	ract ru	JSCAL	- 5	roecon	F9prnt	rierum Esc

RODEL											_	
10:10:16		92	43 LOF	RAY HO	WARD 20	36 8	15 (L			1	8
E (m)	8.0	0 4.00	4.00	4.00			TI	ME PE	RIOD	mir	9	0
L' (m)	40.0	0 40.00	40.00	40.00			T 1	ME SLI	CE	mir	1	5
U (m)	7.3		3.65	3.65			$\mathbf{R}\mathbf{I}$		PERI	OD_mir		
RAD (m)	20.0		20.00	20.00				ME COS		\$/hi	15.0	
PHI (d)	30.0		30.00	30.00			FI		RIOD	mir		
DIA (m)	50.0		45.00	45.00			FI			cu/ve]		
GRAD SEP		0 0	Ø	0			RI	OW PER	iK am.	∕ор∕рг	n P	M
LEG NAME	PCII	DI OUG. Z4 - 4		2-3-4-	их т	LOF	CL	FLOU	J RAT	τ Δ	DI OU. T	IME
	1.02	FLOWS (1st 15 300		2nd etc			85	0.75 1				75
	1.02	145 5		Ø			85	0.75				75
	1.02	250 470		Ø			85	0.75				
	1.02	5 5		Õ				0.75				
מונוווועווי	1.02	,	113		*		0.5	0.13		0.13	13 13	
				MODE 2			_					
FLOW	veh	320	165	810	185							
CAPACITY	veh		727	969	677					UDEL 8		.8
AVE DELAY	mins		0.10	0.42	0.12				L	0 8		С
MAX DELAY	mins		0.14	0.74	0.16				U	al lik		.5
AVE QUEUE	veh		Ø	6	0				C	OST S	97	.6
MAX QUEUE	veh	0	0	9	0							
F1mode F2d	lirect	F3peak	Ctr1F3	rev F4	fact F6	stat	S	F8ecor	1 F9	prnt	F10run	Esc

Concept Cost Estimate (based upon 2016 bid price information) Prepared By: SRF Consulting Group, Inc., Date 10/2016

			Lor Ray Drive at Howard Drive			
ITEM DESCRIPTION		UNIT	UNIT PRICE	EST. QUANTITY	EST. AMOUNT	
PAVING AND GRADING COSTS						
GrP 1 Excavation - common & subgrade GrP 2 Granular Subgrade (CV) GrP 3 County Road Pavement		cu. yd.	\$7.00	7,300	\$51,100 \$61,600	
GrP 2 Granular Subgrade (CV)	(1)	cu. yd. sg. yd.	\$14.00 \$32.00	4,400 8,760	\$61,600 \$280,320	
GrP 4 Concrete Median	(1)	sa. vd.	\$40.00	860	\$34 400	
GrP 5 Walk / Trail	(1)	sg. yd.	\$25.00	1.460	\$36,500 \$22,400	
GrP 6 ADA Pedestrian Curb Ramp		each	\$800.00	28 5,060	\$22,400	
GrP 7 Concrete Curb and Gutter GrP 8 Removals - Pavement		lin. ft. sg. yd.	\$12.00 \$2.50	12.080	\$60,720 \$30,200	
SUBTOTAL PAVING AND GRADING CO	STS:	og. yu.	Ψ2.50	12,000	\$577.240	
PRAINAGE, UTILITIES AND EROSION CONTROL	<u> </u>		1		4011,21	
Dr 1 ILocal Utilities - Sanitary Sewers		lin. ft.				
Dr 2 Local Utilities - Watermains		lin. ft.				
Dr 3 Water Quality Ponds Dr 5 Drainage urban (10,30%)		l.s.			\$173,000	
Dr 5 Drainage - urban (10-30%) Dr 6 Turf Establishment & Erosion Control		30% 10%			\$58.000 \$58.000	
Dr 7 Landscaping		1070			ΨΟΟ,ΟΟΟ	
SUBTOTAL DRAINAGE, UTILITIES AND	EROS	ION CONTROL	_		\$231,000	
SIGNAL AND LIGHTING COSTS				•	·	
SGL 1 Signals (permanent)		each	\$200,000			
SGL 2 At Grade Intersection Lighting (permanent - no		a each	\$10,000	12	\$120,000	
SUBTOTAL SIGNAL AND LIGHTING CO	STS:				\$120,000	
SIGNING & STRIPING COSTS		ila	600.000	0.41	#0.00	
SGN 1 Mainline Signing (C&D) SGN 2 Mainline Striping		mile mile	\$20,000 \$10,000	0.4	\$8,000 \$4,000	
SUBTOTAL SIGNING & STRIPING COST	S:	TIME	Ψ10,000	0.4	\$12,000	
	<u> </u>		ı	l l	Ţ: <u>_</u> ,	
SUBTOTAL CONSTRUCTION COSTS:					\$940,240	
CODITION COUNTRY				L .	40-10,2-10	
MISCELLANEOUS COSTS						
M 1 Mobilization		6%			\$56.000	
M 2 Non Quantified Minor Items (10% to 30%)		20%			\$188.000	
M 3 Temporary Pavement & Drainage		2% 4%			\$19.000	
M 4 Traffic Control		4%			\$38,000	
SUBTOTAL MISCELLANEOUS COSTS:					\$301,000	
ESTIMATED TOTAL CONSTRUCTION COSTS with	nout Co				\$1,241,240	
1 Contingency or "risk" (10% to 30%)		20%			\$248,000	
ESTIMATED TOTAL CONSTRUCTION COSTS PLU	JS CON	NTINGENCY:			\$1,489,240	
OTHER PROJECT COSTS:						
R/W ACQUISITIONS		Lump Sum				
DESIGN ENG. & CONSTRUCTION ADMIN.		Lump Sum				
SUBTOTAL OTHER PROJECT COSTS						
TOTAL PROJECT COST (based upon 2016	bid pri	ice information	1)		\$1,489,24	
INFLATION COST (CURRENT YR. TO YR. C	OF OPE	Years	3%			
•					¢1 400 244	
TOTAL PROJECT COST (OPENING YEAR I			\$1,489,240			

NOTE: (1) Includes aggregate base class 5.

MAJOR ITEMS NOT INCLUDED:
- Local utilities (sanitary sewer or watermain)
- Water quality bonds or other BMPs
- R/W acquisitions
- Engineering design fees
- Inflation